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SUMMARY

Condensers are essential cormponents in power plants, process plants,
air-conditioning, refrigeration, etc. Inadequate design of a condenser may lead
to poor power plant efficiency; hence, condensers must be optimized to maximize
the power plant output.

The presence of noncondensable vases in condensers is one of the major
causes for the deterioration of the condenser efficiency. Since avoiding non-
condensables is impossible in most practical applications, a reliable method is
needed to establish the effect of the non-condensable gas concentration in con-
densers so that they can be designed to minimize the accumulation of such gases
in specific areas.

In this work, a new and general model that is applicable to various
types of condensers, is presented. The developed model has two separate com-
ponents, referred to in this thesis as macroscopic- and microscopic-level models.
The macroscopic-level model is concerned with the numerical solution of vapor-
noncondensable conservation equations. The microscopic-level models address
the heat and mass transfer processes at the interface between the condensate
liquid and the vapor-noncondensable mixture. The macroscopic and microscopic
models are coupled, and are solved iteratively. To avoid limiting the application
of the model to specific configuration, it is assumed that the condensing vapor
flows through a porous medium.

The macroscopic model is based on the numerical solution of the steam
mass continuity, steam-noncondensable mixture momentum and energy and the

noncondensable mass species conservation equations inside the hot region of a
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condenser. These conservation equations are three-dimensional, and account for
the compressibility of the vapor-gas mixture. The pressure, velocity, density and
the gas mass fraction obtained from the macroscopic system solution are then
used in the microscopic modeling scheme, based on the stagnant film model.
This microscopic solution assumes that the condenser can be divided into ge-
ometrically identical unit cells. A unit cell includes the outer surface and the
vicinity of a tube in the case of a shell and tube condenser, a plate in the case of
a plate condenser, a sphere in the case of packed bed condensers and a similarly
defined space in any irregular shape.

The numerical solution of the macroscopic-level equations was per-
formed using an implicit factored finite difference numerical scheme (IFS). The
scheme was modified in two ways, however. One modification made it possible
to include the porous media and condensation terms. The second modification
allows one to include as many mass continuity equations as the situation needs.
This modification is implemented through a simple and innovation method,
whereby the inclusion of the additional conservation equations increases the
computational coast only slightly. The latter modification makes it possible to
model mixture of noncondensables when necessary.

The developed model was applied to a large number of one, two, and
three dimensional problems, involving open channel, porous media, packed bed
and shell and tube condensers. The model predictions were compared with re-
sults obtained from analytical solutions wherever such solutions.were available,
and solutions obtained from well-proven numerical schemes when analytical so-
lutions were unavailable. Excellent agreement was found everywhere, confirming

the correctness of the developed model.



CHAPTER 1

INTRODUCTION

1.1. General Remarks

Condensation occurs when a wet, saturated, or slightly super-heated
vapor contacts a surface which has a temperature below the saturation tem-
perature corresponding to the vapor partial pressure. Condensation also occurs
when vapor comes into direct contact with subcooled liquid. Although homoge-
neous condensation can also occur in highly subcooled metastable vapor, prac-
tical applications generally involve heterogeneous condensation. Heterogeneous
condensation itself may be divided into two types: film-wise and drop-wise.

In film-wise condensation, the condensate forms a liquid film on the
cooling surface, and it occurs when the cooling surface is easily wetted. How-
ever, in drop-wise condensation, the vapor condenses in the form of drops which
grow and detach because of the effect of gravity and/or the effect of high shear
forces after they grow large enough to overcome the interfacial forces between
the drops and the cooling surface. New drops would take the position of the
detached ones. Drop-wise condensation occurs on non-wetted cooling surfaces;
therefore, because of its lower heat transfer resistance, the heat transfer coef-
ficients are about four times larger than those of film-wise condensation [1].
When drop-wise condensation takes place on a surface, the heat transfer coef-
ficients increase with the increase of (Tsq: — Ty) to a point and then decrease,

because further increase of the degree of sub-cooling makes the cooling surface



wetted and film-wise condensation begins [1]. Because of the high heat trans-
fer coefficient, it is advantageous to have drop wise condensation. Drop-wise
condensation, however, is J{ithcult to maintain and the process will eventually
change to film-wise condensalion. However, if appropriate care is taken, such
as coating the cooling surface or adding a detergent to prevent the surface from
heing wetted, drop-wise condensation can be maintained. Because of the above
stated reasons, most surface condensers are designed to operate on film-wise
condensation.

A major difficulty encountered in condensers is the presence of non-
condensable gases. These gases, which are difficult to avoid in practice, reduce
the heat transfer coefficient of condensers by introducing an additional gas film

resistance for heat and mass transfer.

1.2. Condensation of Pure Vapors

Condensation of a saturated vapor in the absence of noncondensables is,
in principle, a liquid-side controlled process and is relatively simple to model, in
particular in regular geometries. Classical condensation models dealt with this
situation. In what follows, some of the important classical models are reviewed.

In film-wise condensation, a continuous film of liquid coats the cool-
ing surface and is driven downward by the effect of gravity. The condensate
film behavior on the cooling surface of the condenser is an important factor in
determining the heat transfer rate. The first analytical work to determine the
heat transfer coethcient was proposed in 1916 by Nusselt [2] with the following
assumptions:

1. Steady state, laminar flow, and no rippling on the condensate film.
2. Within the liquid film, heat is transferred slowly by conduction.

3. Properties of the fluid are constant.



4. Vapor does not exert any force on the liquid film.

5. Acceleration of the liquid is negligible compared to gravitational and viscous
forces.

6. Wall and interface temperalures are constant.

7. Energy deffect associated with sub-cooling of liquid film is neglected.

8. The vapor is pure.

By implementing the above assumptions with the appropriate boundary

conditions on the Navier Stokes equations, Nusselt derived the following well-

known relationship:

p?fgthgk?] & (L.1)

hnu = 0.943|: Li AT,
where ATy = (Tsqt — Tw), and g, is the component of the gravitational acceler-
ation vector along the inclined surface.

The above equation describes the liquid-side heat transfer coefficient
over an inclined plate of length L. Because pure film condensation is rarely found
without the presence of drop wise condensation, and because the condensate
has ripples that help the liquid to mix with the film, condensation heat transfer
coetlicients are usually higher than those predicted by Equation (1.1},

Rohsenow [3] solved the filmwise condensation problem, accounting for
the correct nonlinear temperature distribution. He assumed that the wall tem-
perature is constant, vapor is saturated, no vapor shear stress on the liquid film,
and the physical properties of the liquid are constant. Rohsenow also suggested
that, s, in Equation (1.1) should be replaced by h 4 +0.68¢p¢(Tsq: — T,,) Where
cpf is the specific heat of the liquid.

Chen [4]; and Koh, Sparrow, and Hartnett [5] have taken into account

the effect of the drag which the vapor exerts on the liquid. Chen [4] has suggested



the following approximate Equation that includes momentum and interfacial

shear effects.

hay [14+0684 10024874
Nu |1+ + } (1.2)

hne | 1+40.856—0.15A8

AT ki AT,
where A = 5"—}%——3 and B = 5L,
fa Hiltfg

Equation (1.2) is only valid for A < 2, B < 20 and Pry < 0.05, or
Pre> 1.

In the case of turbulent film flow, the Nusselt assumptions are evidently
not valid. Turbulent flow might occur at the lower end of the inclined plate. In
this case, heat can no longer be assumed to be transferred through the conden-
sate film by conduction, due to the significance of eddy diffusivity, which greatly
increases the heat transfer rate. Unlike the laminar case, the heat transfer co-
efficient increases with the distance along the plate ,z, because the turbulence
increases as the film thickness gets larger. The following correlation[1] gives the

average heat transfer coefficient for turbulent film condensation:

— pilps ~ ps)gzkd] 3
7 = 0.0076| 11 23) = f} R4 (1.3)
#r

where Reyp is the Reynolds number at £ = L.
Nusselt also derived the following correlation for the heat transfer co-
efficient for film condensation on a horizontal tube using assumptions similar to

those he had made for the plate geometry:

T 1/4

kf qu(Tsat - Tw)kf

Equation (1.4) was derived with the assumption that the condensation thickness
is much smaller than the radius of the tube,
In the case of forced convection, the shear forces between the condensate

and the vapor are important. In order to solve this problem correctly, it is



necessary to solve the continuity and momentum conservation equations for the
vapor and the condensate.

Shekriladze and Gomelauri [6] extended the analytical work of Nusselt
for an isothermal cylinder without separation by assuming that the change in
momentum across the condensate-liquid interface is the main factor which causes
the surface shear stress. The following result was obtained:

_ ke -
B o.gb-f-émelf2 (1.5)

where Re = B"—Zigg and ug is the steam velocity. When gravity and velocity are

involved, they recommended the following equation:

- - gDouyshyg Ve
N,=064Re 1+ [ 1+ 16922119 .
{ +( +109L )] (1.6)

A great deal of analytical work for pure vapor condensation on flat
plates and cylinders is available in the literature. An excellent review of laminar

film condensation is given by Rose [7,8].

1.3. Condensation in the Presence of Noncondensables

In the previous section, condensation of pure vapor was discussed, where
the major heat transfer resistance was due to the condensate layer which accu-
mulates on the cooling surface. The assumption of pure vapor condensation is
not valid in most practical cases, because a small amount of noncondensable
gases can easily find its way into a condenser. Collier [9] and Minkowycz [10]
reported that even 0.5% mass of air may decrease the heat transfer rate by more
than 50%.

It has been noted that a small amount of noncondensable gases present

in steam reduces the overall heat transfer coeflicient, which, in turn, degrades the



performance of the condenser. As steam condenses on the cooling surface, the
noncondensables accurnulate and form a noncondensable-rich layer between the
condensate and the steam. This gas film reduces the rate of steam that reaches
the cooling surface by introducing an additional mass transfer resistance. Figure
1.1 is a schematic of the vapor and noncondensable concentration profiles near
the vapor-condensate interphase. The flow of condensing vapor towards the
interphase results in the accumulation of noncondensable gas near the liquid
surface. The vapor pressure at the interphase is reduced significantly, even
when the concentration of noncondensables in the bulk vapor is quite small.
Othmer [11] 1 1929 studied the effect of a small quantity of air on the
temperature drop and on the condensation rate of steam, along an isothermal
surface. He carried out experiments using a shell with a tube partially filled with
liquid. The steam was allowed to pass through the shell and the liquid to pass
through the tube. He suggested an empirical correlation which relates the heat

transfer coeflicient to the steam temperature drop, and the air concentration:

log(k) = log(AT)[1.213 — 0.00247

o

3030 1] [Iog(C’ +0.505) — 1.551 — 0.009T (1.7)

where h is in Btu/(hr — fi2 — F),C is the percent volume of air, T is the
temperature of steam in degree Fahrenheit, and AT is the temperature differ-
ence between the bulk vapor and the cooling surface. In deriving his empirical
correlation, Othmer assumed that the temperature of the tube wall remained
constant, and the air-stream mixture was stagnant. Othmer’s work was followed
by a myriad of analytical, experimental, and numerical studies in the area of
condensation. Some of these investigations are discussed below.

Meisenburg, Boarts, and Badger [12] studied condensation in the pres-

ence of noncondensables, in a vertical tube and correlated the ratio of the actual
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SUMMARY

Condensers are essential cormponents in power plants, process plants,
air-conditioning, refrigeration, etc. Inadequate design of a condenser may lead
to poor power plant efficiency; hence, condensers must be optimized to maximize
the power plant output.

The presence of noncondensable vases in condensers is one of the major
causes for the deterioration of the condenser efficiency. Since avoiding non-
condensables is impossible in most practical applications, a reliable method is
needed to establish the effect of the non-condensable gas concentration in con-
densers so that they can be designed to minimize the accumulation of such gases
in specific areas.

In this work, a new and general model that is applicable to various
types of condensers, is presented. The developed model has two separate com-
ponents, referred to in this thesis as macroscopic- and microscopic-level models.
The macroscopic-level model is concerned with the numerical solution of vapor-
noncondensable conservation equations. The microscopic-level models address
the heat and mass transfer processes at the interface between the condensate
liquid and the vapor-noncondensable mixture. The macroscopic and microscopic
models are coupled, and are solved iteratively. To avoid limiting the application
of the model to specific configuration, it is assumed that the condensing vapor
flows through a porous medium.

The macroscopic model is based on the numerical solution of the steam
mass continuity, steam-noncondensable mixture momentum and energy and the

noncondensable mass species conservation equations inside the hot region of a



Xv

condenser. These conservation equations are three-dimensional, and account for
the compressibility of the vapor-gas mixture. The pressure, velocity, density and
the gas mass fraction obtained from the macroscopic system solution are then
used in the microscopic modeling scheme, based on the stagnant film model.
This microscopic solution assumes that the condenser can be divided into ge-
ometrically identical unit cells. A unit cell includes the outer surface and the
vicinity of a tube in the case of a shell and tube condenser, a plate in the case of
a plate condenser, a sphere in the case of packed bed condensers and a similarly
defined space in any irregular shape.

The numerical solution of the macroscopic-level equations was per-
formed using an implicit factored finite difference numerical scheme (IFS). The
scheme was modified in two ways, however. One modification made it possible
to include the porous media and condensation terms. The second modification
allows one to include as many mass continuity equations as the situation needs.
This modification is implemented through a simple and innovation method,
whereby the inclusion of the additional conservation equations increases the
computational coast only slightly. The latter modification makes it possible to
model mixture of noncondensables when necessary.

The developed model was applied to a large number of one, two, and
three dimensional problems, involving open channel, porous media, packed bed
and shell and tube condensers. The model predictions were compared with re-
sults obtained from analytical solutions wherever such solutions.were available,
and solutions obtained from well-proven numerical schemes when analytical so-
lutions were unavailable. Excellent agreement was found everywhere, confirming

the correctness of the developed model.
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APPENDIX A-1

SOME THERMODYNAMIC AND PHYSICAL
PROPERTIES OF WATER AND STEAM

The following equation is the density of water in kg/m? as a function

of temperature

p = 598.8134 + 2.828807T — 3.784399 x 10~>T% — 7.474704 x 10~573

+1.129865 x 1078T* 275k < T < 580k. (A-1.1)

The specific heat at constant pressure in J/kgk for water as a function

of temperature is given by

Cp = 10146.91 — 62.78324T + 2.500216 x 107172 — 4.520721 x 107473

+3.17923 x 1077T* 275k < T < 580k {A-1.2)
and C,, is in J/kgk.

k= ~1.561273 + 1.564598 x 10T — 3.970037 x 107572 4 4.560812 x 10~%73

—2.247724 x W0~NT* 275k < T < 580k (A-1.3)
where k is thermal conductivity of water (W/mk).

v x 108 = 61.79776 — 2.5 x 10~ 'T — 1.79165 x 107472
— 4969477 x 107773 + 5.225 x 10797* + 1.457343 x 1071177

_ 4675553 x 10”78 275k < T < 330k
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and

v x 10° ~ 10.31275 — 6.536036 x 10727 + 1.488566 x 10472
— 1.666241 x 107772 + 2.34858 x 107197* — 4.176862 x 10~ 1*7®

+2.884012 x 1071%7% 330k < T < 580k (A-1.4)
When v is kinematic viscosity of water (m?/sec)

Peat X 107° = 5.56268 x 107! — 2.069575 x 10737, ,;

— 4.339096 x 107572, + 1.306466 x 10~%73

sat

— 5.830305 x 107 127* . _ 1.735039 x 101675

sat sat

+ 2.540331 % 107178 . 927395k < T,q¢ < 305k
Peat X 1077 = 2207765 < 1071 + 1.537165 x 10737,

+7.357538 x 107972, — 2 950122 x 107873

sat

— 3.012597 x 1071072 1 3.864352 x 101375

sat

+ 1.360178 x 101578

gat

305 < Teay < 350
Paat X 107° = —16.98454 -+ 1.154695 x 10~ T,

—1.492 x 107*T2, — 1.866152 x 107772

sat

+4.152246 x 10~1974  _ 3.366653 x 10~1275

sat sat

+8.03126 x 107978, 350 < Tuur < 350 (A-1.5)

where pg,: is the saturation pressure as a function of the saturation temperature
(N/m?).

The saturation temperature as a function of pressure 59|

_ 2 3
Tset = 01 + a2Pgat + a3Pgar T Q4P

as as a7 2 ag
+ b+ agpllf (A-1.6)

Psat Paat Psat pit{f
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where

a; = 3.5653 x 10°

ay = —2.0611

as = 5.7064 x 1073
as = —1.0110 x 107°
as = 2.1841

ag = —9.9885 x 1072
ar = 2.5304 x 10~°
ag = 3 45 x 10!

ag = —2.2420 x 10*

when T4 1s-in k and p,,; in bars.
The saturated liquid and vapor enthalpies in Btu/1bm as a function of

saturated pressure in psia are given by the following relations [60]

£2 a2 (In(psar) )’ 0.1 < page < 950
h =9 B8 5a2i(In(paar)’ 850 < paar < 2230 (A-1.7)
52 0a3: (Perit — Paat)®*)" 2250 < pagt < perse
and
E}__l,obli(ln(pmt))j 0.1 € pgat <1500
hy = q B3 052 (In(paat)’ 1100 < paas < 2650 (A-1.8)
28 383 ((porit — Paat)o"n)i 2550 < psar € Perit
where the coeflicients al;, a2;,a3;, b1;,52;, and b3; are given by the following

table:
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Table A-1.1. Coeflicient Used in Equations (A.7) and (A.8).

al;

(1241

a3i

W =] & ) D

6970887859 x 102
.333752994 x 102
2318240735 x 10!
11840599513 x 10°
—.5245502284 x 102
2878007027 x 1072
1753652324 x 1072
—.4334859620 x 1073
3325699282 x 104

8408618802 x 108
.3637413208 x 108
—.4634506669 x 105
.1130306339 x 108
—.4350217298 x 109
—.3898988188 x 10*
6697399434 x 10°
—.4730726377 x 102
1265125057 x 101

9060030436 x 103
—. 1426313520 x 102

1522233257 x 10°
~.6973992961 x 10°

.1743091663 x 10°
—.2319717696 x 101
.1694019149 x 102
—.6454771710 x 10~*
.1003003098 x 10~3

-~

b1;

b2;

b3;

W oo =} Oy W i W

10
11

1105836875 x 10*
1436943768 x 102
8018288621 x 10°
1617232913 x 101
—~.1501147505 x 10~2
0000000000 x 10°
.0000000000 x 109
0000006000 x 10°
.0000000000 x 10°
—.1237675562 x 1075
3004773304 x 1075
—.2062390734 x 106

—.2234264997 x 107
1231247634 x 107
—.1978847871 x 10°
.1859988044 x 102
—.2765701318 x 10*
.1036033878 x 10*
—.2143423131 x 103
1690507762 x 102
—.4864322134 x 10?

9059978254 x 10°

5561957539 x 10!

.3434189609 x 10!
~.6406390628 x 10°
5918579484 x 101
—.2725378570 x 102
5006336938 x 10—*
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APPENDIX A-2

PROGRAM LISTING

A THREE DIMENSIONAL COMPRESSIBLE FLUID FLOW USING POROUS
MEDIUM IN THE PRESENCE OF NONCONDENSABLE.

A PROGRAM WRITTEN BY MOHAMMED ALJOHANI

THE SUBROUTINES NETRIP AND PBTRIP ARE TAKEN FROM
(COMPUTATIONAL FLUID

MECHANICS AND HEAT TRANSFER) BY ANDERSON, TANNEHILL AND
PLETCHER

THESE SUBROUTINES

WERE WRITTEN BY AUKUMAR R. CHAKRAVARTHY,

PROGRAM MAIN

PARAMETER(L=11,M=11,N=11,138=6)

REAL*8 UX(L,M,N) ,VY(L,M ,N),WZ(L ,M,N),REO(L ,M,N),TE(L ,M,N)
REAL*8 RHO1(L,M,N),RHO2(L,M,N)

REAL*8 ASMI(IS,IS),ASPI(IS,IS),RSMI(IS,IS),RSPI(IS,IS)
REAL#*8 RSI(IS,IS),ATMI(IS,IS,L),ATPI(IS,IS,L),ATI(IS,IS,L)
REAL*8 CTMI(IS,IS,N),CTPI(IS,IS,N),CTI(IS,IS,N)

REAL*8 PFX(IS),PV1iX(IS),PV2X(IS),PV3X(IS),PV2X2(IS,L,M,N)
REAL*8 PV3X2(IS,L,M,N),PViX2(IS,L,M,N),PGY(IS)

REAL*8 PR(L,M,N),EN(L,M,N),PWiY2(IS,L,M,N)

REAL*8 PW2Y2(IS,L,M,N),PW3Y2(IS,L,M,N),PW1Y(IS)

REAL*8 PW2Y{IS),PW3Y(IS),PXDVi(IS),PXDV2(IS),PXDV3(IS),DELU(IS)
REAL*8 BMAINX(IS,L),BMAINY(IS,M),BMAINZ(IS,N),UCON(IS)
REAL*8 UCONX(IS,L),UCONY(IS,M),UCONZ(IS,N)

REAL*B PYDW1(IS),PYDW2(IS),PYDW3(IS),DUCON(IS,L,M,N)

REAL*8 UOLD(IS,L,M,N),BTMI(IS,IS,M),UNEW(IS,L,M,N)

REAL=8 BTPI(IS,IS,M),BTI(IS,IS,M),PHZ(IS),PE1Z(IS),PE2Z(IS)
REAL#*8 PE3Z(IS),PZDE1(IS),PE1Z2(IS,L,M,N),PZDE2(IS),PZDE3(IS)
REAL*8 PE2Z2(IS,L,M,N),PE3Z2(IS,L,M,N),BETA(L,M,N),ERGUN(IS)
REAL*8 SOURC(IS,IS),ERGUNS(IS),SOURCS(IS,IS)

REAL=8 AMDD(L,M,N),QOA(L,M,N),SPECSA(L,M,N),CONCS(IS)
REAL*8 CONN(IS,IS),CONNEW(IS,L,M,N),CONOLD(IS,L,M,N)

REAL*8 FISE(L,M,N),UE(L,M,N),PS(L,M,N),TC(L,M,N) ,HSA(L,M,N)
REAL*8 HEAS(L,M,N),FIS(L,M,N),HFG(L,M,N) ,HCA(L ,M,N)

REAL*8 XX(L,M,N),YY(L,M,N),ZZ(L,M,N),AJM(L,M,N),ITMM
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REAL*8 DX1,DX,DY1,DY,DZ1,DZ,FRAC1,FRAC2,FRAC,PIN,POUT,DT
REAL*8 RPI,RMI,RIJ,RiPI,RIMI,R1IJ,R2PI,R2MI,R2IJ,UPI,UMI,UIJ
REAL*8 VPI,VMI,VI1J,WPI,WMI,WIJ,EPI,EMI,EIJ,PPI,PMI,PI1J,TPI,TMI
REAL*8 TIJ,BPI,BMI,BIJ,RPJ,RMJ,R1PJ,R1MJ,R2PJ,R2MJ,UPJ,UMJ,VPJ
REAL*8 VMJ,WPJ,WMJ,EPJ,EMJ,PPJ,PMJ, TPJ,TMJ,BPJ, BMJ,RPK,RMK,R1PK
REAL*8 R1MK,R2PK,R2MK, UPK, UMK, VPK, VMK, WPK , WMK , EPK,
/EMK , PPK,PMK, TPK

REAL#*8 TMK,BPK,BMK,RPIPJ,RMIPJ,R1PIPJ,RiMIPJ,R2PIPJ,R2MIPJ,UPIPJ
REAL*8 UMIPJ,VPIPJ,VMIPJ,WPIPJ,WMIPJ,EPIPJ,EMIPJ,RPIMJ,RMIM]
REAL#*8 R1PIMJ,RIMIMJ,R2PIMJ,R2MIMJ,UPIMJ,UMIMJ,
JVPIMJI,VMIMI, WPIMJ

REAL*8 WMIMJ,EPIMJ,EMIMJ,RPIPK,RMIPK,R1PIPK,
/RIMIPK,R2PIPK,R2MIPK

REAL*8 UPIPK,UMIPK,VPIPK,VMIPK,WPIPK,WMIPK,EPIPK,EMIPK,RPIMK
REAL*8 RMIMK,R1PIMK,R1MIMK,R2PIMK,R2MIMK,UPIMK,UMIMK,
/VPIMK, VMIMK

REAL*8 WPIMK,WMIMK,EPIMK,EMIMK,RPJPK,RMJPK,R1PJPK,
/R1MJPK,R2PJPK

REAL*8 R2MJPK,UPJPK,UMJPK,VPJPK,VMJPK, WPJPK,
/WMJPK,EPJPK, EMJPK

REAL*8 RPJMK,RMJIMK,R1PJMK,R1MJIMK,R2PJIMK, R2MIMK,
/UPJIMK , UMJMK, VPJIMK

REAL*8 VMJMK,WPJMK,WMJMK,EPJMK, EMIMK

REAL*S UPIH,UMIH,UPJH,UMJH,UPKH,UMKH,VPIH,VMIH,
/VPJH,VMJH, VPKH, VMKH

REAL*28 WPIH,WMIH,WPJH,WMJH,WPKH,WMKH,RPIH,RMIH,RPJH,

/RMJH, RPKH, RMKH

REAL*8 BPIH,BMIH,BPJH,BMJH,BPKH,BMKH

REAL*8 AA,BB,CC,DD

OPEN(UNIT=12,FILE=’TRANS’ ,STATUS="UNKNOWN')
DPEN(UNIT=101,FILE="C0401’,STATUS=’UNKNOWN’)



OPEN(UNIT=102,FILE="'C0402" ,STATUS="UNKNOWN’)
OPEN(UNIT=103,FILE="C0403’ ,STATUS=’UNKNOWN’)
OPEN(UNIT=104,FILE="C0404"’ ,3TATUS="UNKNOWN’)
OPEN(UNIT=105,FILE="C0405’ ,STATUS='UNKNOWN’)
OPEN(UNIT=106 ,FILE="C0406’ ,STATUS='UNKNOWN’)
OPEN (UNIT=107 ,FILE="C0407’,STATUS="UNKNOWN*)
OPEN(UNIT=108 ,FILE="C0408’ ,STATUS='UNKNDOWN’)
OPEN (UNIT=109,FILE="C0409’,STATUS="UNKNOWN’)
OPEN (UNIT=110,FILE="C0410’,STATUS="UNKNOWN*)
OPEN(UNIT=111,FILE=’C0411°’,STATUS="UNKNOWN’)
DPEN(UNIT=112,FILE=’C0412"’ ,STATUS="UNKNOWN’)

PRINT =, 'FOR CONSTANT INLET PRSR, PRES 1,
/FOR CONS INLT VELCY PRES ANY NMBR’
READ(*,*) PRESUR

PRINT *, ’*TIME STEP-DT-’

READ (*,*) DT

PRINT %, 'STEAM INLET FRACTION’

READ(*,*) FRACL

PRINT =, *GAS INLET FRACTION®

READ(*,*) FRAC2

PRINT =, 'FOR PACKED BED ENTER 1, ELSE ENTER ZERO’

READ (*,*) PORNTP

PRINT *, °'FOR SHELL AND TUBE ENTER 1, ELSE ENTER ZERO’

READ(*,*) PORNTS

IF(PRESUR.EQ.1.) THEN

PRINT *, ’ENTER INLET PRESSURE’

READ(*,%) PIN

ELSE

PRINT #*, ‘ENTER INLET X-VELOCITY’

READ (*,*) UIN

PRINT *, ’FOR SHELL AND TUBE CONDENSATION
/ENTER 1, ELSE ENTER ANY NUMBER’

157
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READ (*,*) SHNON

PRINT *, ’*ENTER INLET X-VELOCITY®
PRINT *, °'FOR PACKED BED CONDENSATION
/ENTER 1, ELSE ENTER ANY NUMBER'’

READ (*,*) PANON

ENDIF

PRINT *, *ENTER OUTLET PRESSURE’

READ(*,+) POUT

PRINT *, 'ENTER X-DISSIPATION COEFFIETIENT’
READ(*,*) EPSX

PRINT *, *ENTER Y-DISSIPATION COEFFIETIENT’
READ (*,*) EPSY

PRINT %, °‘ENTER Z-DISSIPATION COEFFIETIENT®
READ (*,*) EPSZ

DT=.02

DO 2003 I=1,L
DO 2003 J=1,M
DO 2003 K=1,N
READ THE TRANSFORMATION COORDINATE SYSTEM FROM THE FILE
TRANS
THE FILE TRANS IS GENERATED BY THE PROGRAM TRANS.F
XX, YY, ZZ ARE THE GREEK LETTERS XI, ETA, AND ZETA, RESP.
AJM IS THE TRANSFORMATION JACOBIAN.
READ(12,*) XX(I,J.K),YY(I,J,K),ZZ(I,J,K),AIM(I,J,K)
FOR NO TRANSFORMATION REMOVE THE FOUR COMMENTED LINES
AND DO NOT RUN TRANS.F

XX(I,1,K)=1.

YY(T,J,K)=1.

ZZ(I,J,K)=1.

AJM(I,J,K)=1.
2003 CONTINUE

READ THE METRICS FORM FILE XYZ.GRD
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c

THESE ARE THE CORNORS QF THE BOUNDARIES
DELHX=.9999

THESE ARE THE DIMENSTIONS IN WHICH THE BOUNDARIES ARE
DEFINED.

LX1=1
LX2=1
LX3=L
LX4=L
NY1=1
NY2=6
NY3=6
NY4=M

diff=0.

THESE ARE THE INCREMENTS IN ALL DIRECTIONS
DXi1=.1
DX=2.%DX1

DELHY=.9999
DYi=.1
DY=2.=*DY1

DZi=.1
DZ=2.*DZ1

9
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PI=3.1415927

THK=0.0035

GAM=1.4
AVIS=.896

ALAM=-2_ /3 %AVIS

DP IS THE PARTICal DIAMETER IN THE PDROUS MEDIUM
FORMULATION

DP=5./1000,

TH=1.

SW=.5

THIS IS THE INITIAL TEMPERATURE.

TIN=300.

THD=TH

ALV=ALAM+2 . *AVIS

THE FOLLOWING ARE THE TMPLICIT DISSIPATION COEFFICEINTS.

PUT PROPER VALUES WHEN NEEDED AS AFUNCTION OF EPSX,EPSY
AND EPSX

EPSIX=0.

EPSIY=0,
EPSIZ=0.

THIS IS THA MAXIMUM TIME LIMIT
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ITMAX=E000

WE=(1.+2, %3W) /2.
Wi=0.

WY=WX

WWZ=WX

RIN=1.

VINF=1.
RINF=1.

AMINF=1.

TINF=VINF*VINF

ALINF=1.

RGAS=287 .
8.314E3/18.

CVOL=RGAS/(GAM-1.)

CP=GAM*RGAS/ (GAM-1.)

AMCINF=VINF/SQRT (GAM*RGAS*TINF)

PRNUM=0, 72
AVIS*AMINF*CF/THK

REINF=RINF*VINF*ALINF/AMINF

D30 IS THE TUBE DIAMETER
D30=19/1000. '
PIT I3 THE PITCH SIZE

161
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PIT=26/1000.

THIS IS THE CONVERGANCE RELATIVE LIMIT

EPPS=1.E~5

THIS THE PORQSITY FOR PACKED BED AND SHELL AND TUBE
DO &80 I=1,L

DO 50 J=1,M

D0 80 K=1,N

IF{PORNTP.EQ.0.AND.PORNTS.EQ.0.) THEN
BETA{I,J,K)=1.

ELSEIF{PORNTS.EQ.1) THEN

BETA(I,J,K)=1.-PI/4.%(DSO/PIT)**2.

THESE ARE INITIAL CONDITIONS FGR CONDENSATION PART OF SHEL
AND TUBE :

AMDD(I,J,K)=0.
QOA(I,J,K)=0,

THIS IS THE SPECIFIC AREA OF THE SHELL AND TUBE CONDNESER

SPECSA(I,J,K)=4.+(1.-BETA(I,J,K))/DS0

ELSEIF (PORNTP.EQ.1) THEN
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BETA(I,J,K)=.39

c THESE ARE INITIAL CONDITIONS FOR CONDENSATION PART OF
c PACKED BED CONDENSOR

AMDD(I,J,K)=0.
QOA(I,J,K)=0.

C THIS IS THE SPECIFIC AREA OF THE PACKED BED CONDNESER

SPECSA(I,J,K)=6.%(1.~-BETA(I,J,K))/DP

ELSE
ENDIF

50 CONTINUE
C THIS I8 THE VALUE OF BT

BETAT=1.-PI/4.%(DSQ/PIT)**x2,

C THIS IS THE COEFFICEINT OF THE MASS EQUATIONS INCLUDING THE
c NONDIMINSIONALIZED TERM.

C DIFF IS THYE DIFFUSION COEFFICIENT.

c DIFF=1,

GEE=DIFF/(VINF*ALINF)
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THIS IS THE INITIAL CON. ALL OVER THE NUMERICAL DOMAIN

DO 120 I=2,L-1

DO 120 J=2,M-1

DO 120 K=2,N-1
IF((I.LE.LX2.AND.J.LE.NY2) .0R. (I.GE.LX3.AND.J.GE.NY3)) THEN
UX(I,J,K)=0.
VY({I,J,K)=0.
WZ(I,J,K)=0.
PR(IL,J,K)=0.
RHO1(I,J,K)=0.
RHO2(I,J,K)=0.
RHO(I,J,K)=0.
EN(I,J,K)=0.
TE(I,J,K)=0.

ELSE

Ux(1,J,K)=0.
VY(I,J,K)=0.
WZ(I,J,K)=0.
PR(I,J,K)=POUT
RHO1(I,J,K)=FRAC1*RIN
RHO2(I,J,K)=FRAC2*RIN
RHO(I,J,K)=RHO1(I,J,K)+RHO2(I,J,K)

EN(I,J,K)=PR(I,J,K)/{(GAM-1.)
TE(I,J,K)=1./(RHO{IL,J,K)*CVOL)*EN(I,J,K)
ENDIF



165

120 CONTINUE

TO BE USED FOR WRITE STATEMENT AT FIXED Z

NY=(M-1)/2+1
NZ=(N-1)/2+1

THE FOLL. IS THE TIME LOOP

DG 130 ITIME=1,ITMAX

ITMM IS AN INDEX TO PRINT DATA AT CERTAIN INTERVALS
THE INTERVAL HERE IS 100

FFITM=(FLOAT (ITIME)+48.)/50.
ITMM=INT ((ITIME+49)/50)
RRITM=FFITM-ITMM

IF(ITIME.EQ.150.0R.ITIME.EQ.400.0R. ITIME.EG.600.0R.ITIME

/ .EQ.800.0R.ITIME.EQ.1400) THEN

DO 988 KK=1,N

WRITE (*,*)

/UX(2,NY,KK) ,RHO(2,NY,KK) ,UX(L,NY,KX) ,RHO(L ,NY KK} , ITIME
988 CONTINUE

ELSE

ENDIF
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THE FOLLOWING STATEMENET ARE TO BE USED AT THE END OF THE

PROGRAM TO INITIALIZE THE
CONVERGANCE CRITERION

SUM1=0,
SUM2=0.
SUM3=0.
SUM4=0,
SUME=0Q.
SUME=0.

IF(ITIME.EQ.1) THEN
SWSW=0.

THDSW=Q.
ELSE

SWSW=SW/(1.+3W)
THDSW=THD*DT/ {1 .+SW)

ENDIF

DTSW=DT/ (1.+SW)
THSW=TH*DT/ (1.+5W)
INLET AND EXIT B.C'S

DO 132 KK=2,N-1
DO 132 JJ=2,M-1

THIS IS THE OPEN INLET BOUNDARY CONDITIONS

IF{JJ.GT.NY2) THEN

IF(PRESUR.EQ.1.) THEN
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UX{1,JJ,RK)=UX(2,JJ,KK)
PR(1,JJ,KX)=PIN

ELSE

UX{1,JJ,KK)=UIN
PR(1,JJ,KK)=PR(2,JJ,KK)
ENDIF

VY(1,JJ,KK)=0.

WZ(1,JJ,KK)=0.

RHO1(1,JJ,KK)=FRAC1*RIN
RHO2(1,JJ,KK)=FRAC2*RIN

RHO(1,JJ,KK)=RHO1(1,JJ,KK)+RHO2(1, JJ,KK)

EN(1,JJ,KK)=PR(1,JJ,KK) /(GAM-1.)+
/0.5%«RHO(1, JJ , KK) #UX (1, JJ, KK} %*2.

TE(1,JJ,KK)=1./(RHO(1,JJ,KK)*CVOL)*(EN(1, JJ,KK) -
/0.5«RHO(1,JJ,KK)*UX(1,JJ,KK)**2.)

ELSE

ENDIF

THIS IS THE NONSLIP INLET ( 18T. X SURFACE)

IF(JJ.LE.NY2) THEN

UX(LX2,JJ,KK)=0.
PR(LX2,JJ,KK)=4./3.*PR(LX2+1,JJ,KK)-1./3 . «PR(LX2+2,JJ,KK)

VY(LX2,JJ,KK)=0.

WZ(LX2,JJ,KK)=0.

TE(LX2,JJ,KK)=1./3.%(4, «TE{LX2+1,JJ,KK)-TE(LX2+2, JJ,KK))
EN(LX2,JJ,KK)=1./3.%»(4 *EN(LX2+1,JJ,KK)-EN{LX2+2,JJ,KK))
RHO1(LX2,JJ,KK)=1./3.%(4.*RHO1(LX2+1,JJ,KK)-RHO1 (LX2+2,JJ,KK))



RHO2(LX2,JJ,KK)=1./3.%(4.=RHO2(LX2+1,JJ,KK)-RHD2 (LX2+2, JJ,KK))

RHO(LX2, JJ,KK)=RHD1(LX2,JJ,KK)+RHO2 (LX2, JJ,KK)
ELSE
ENDIF

THE FOLL. ARE THE OUTLET B.C’S
IF{JJ.LT.NY3) THEN
UX{L,JJ,KK)=UX(L-1,JJ,KK)

VY(L,JJ,KK)=VY(L-1, JJ,KK)
WZ(L,JJ,KK)=WZ(L-1,JJ,KK)

RHO1(L,JJ,KK)=RHO1(L-1,JJ,KK)
RHO2(L,JJ,KK)=RHO2(L-1,JJ,KK)
RHO(L, JJ,KK)=RHO1(L, JJ,KK) +RHO2(L, JJ,KK)

PR(L,JJ,KK)=POUT

EN(L,JJ,KK)=PR(L,JJ,KK)/(GAM-1.)+
/0. 5*RHOCL, JT,KK) « (UX (L, JJ,KK) #*2,
VYL, JT,KK) *%2 +WZ(L,JJ,KK) *%2 )

TE(L,JJ,KK)=1./¢RHO(L,JJ,KK)*CVOL)*{(EN(L, JJ,KK) -
/0. 5*RHO(L, JJ,KK) = (UX (L, JJ,KK) **2 +VY(L, JJ ,KK) %*2 +
/WZ(L, JI,KK) *%2,))

ELSE

ENDIF

THIS IS THE NON-SLIP OUTLET B.C’S ( 2ND X SURFACE)

IF(JJ.GE.NY3) THEN

UX(LX3,JJ,KK)=0.

VY(LX3,JJ,KK)=0.

WZ(LX3,1J,KK)=0.

PR(LX3,JJ,KK)=4./3.#PR(LX3-1,JJ,KK}-1./3.*PR(LK3-2,JJ ,KK)

TE(LX3,JJ,KK)=1. /3. *(4.*TE(LX3-1,]J,KK)-TE(LX3-2,JJ,KK})
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EN(LX3,JJ,KK)=1./3.%(4.*EN(LX3-1,JJ,KK}-EN(LX3-2,JJ,KK))
RHO1(LX3,JJ,KK)=1./3.%(4.*RHO1(LX3-1,JJ,KK)-RHO1(LX3-2,JJ,KK))
RHO2(LX3,JJ,KK)=1./3.%(4.*RHO2(LX3-1,JJ,KK)-RHO2{LX3-2,JJ,KK))
RHO(LX3,JJ,KK)=RHO1(LX3,JJ],KK)+RHO2(1L.X3, JJ,KK)

ELSE

ENDIF

CONTINVE

NOW, START THE WALL B.C’S, NORMAL TO THE Y-AXIS
FIRST, THE LOWER B.C,S

DO 134 II=1,L
DO 134 KK=1,N
13T Y SURFACE FROM BOTTOM

IF(II.GT.LX2) THEN

UX(II,1,KK}=0.
PR(II,1,KK)=PR(II,2,KK)
4./3.+PR(II,2,KK)-1./3.*PR(II,3,KK)

VY(II,1,KK)=0.
WZ(II,1,KK)=0.
TE(II,1,KK)=TE(II,2,KX)
1./3.%(4.*TE(II,2,KK)-TE(II,3,KK))
EN(II,1,KK)}=EN(II,2,KX)
1./3.%(4. *EN(IT,2,KK)~EN(II,3,KK))
RHO1(II,1,KK)=RHD1(II,2,KK)
1./3.%(4.#RHO1(II,2,KK)-RHO1(II,3,KK))
RHO2(II,1,KK)=RHD2(II,2,KK)
1./3.%(4.«RHO2(IT,2,KK)~RHO2(II,3,KK))
RHO(II,1,KK)=RHO1(II,1,KK)+RHO2(II,1,KK)

ELSE
ENDIF
THE 2ND Y SURFACE FROM BOTTOM
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IF(II.LE.LX2) THEN

UX(II,NY2,KK)=0.
PR(II,NY2,KK)=PR{II,NY2+1,KK)
4./3.*PR(II,NY2+1,KK)~1./3 . «PR{II,NY2+2,KK)

VY(II,NY2,KK)=0.
WZ(II,NY2,KK)=0.
TE(II,NY2,KK)=TE(II, NY2+1,KK)
1./3.%(4 . «TE(II,NY2+1,KK)-TE(II,NY2+2,KK))
EN(II,NY2,KK)=EN(II,6NY2+1,KK)
1./3.%(4. #EN(II,NY2+1,KX)-EN(II,NY2+2,KK))
RHO1(II,NY2,KK)=RHO1(II,NY2+1,KK)
1./3.%(4.*RHO1 (II,NY2+1,KK)~RHO1 (II,NY2+2,KK))
RHO2(II,NY2,KK)=RHO2(II,NY2+1,KK)
1./3.%(4.*RHO2¢II,NY2+1,KK)-RHO2(II,NY2+2,KK))
RHO(II,NY2,KK)=RHO1(II,NY2,KK)+RHO2(II,NY2,KK)

ELSE
ENDIF

THE 3RD. Y SYRFACE
IF(II.GE.LX3) THEN

UX(II,NY3,KK)=0.
PR(II,NY3,KK)=PR(II,(NY3-1,KK)
4./3.+PR(II,NY3-1,KK)~1./3.%PR(II,NY3-2,KK)

VY(II,NY3,KK)=0,
WZ(II,NY3,KK)=0.
TE(II,NY3,KK)=TE(II,NY3-1,KK)
1./3.%(4 «TE(II,NY3-1,KK)-TE(II,NY3-2,KK))
EN(II,NY3,KK)=EN(II,6NY3-1,KK)
1./3.%(4.*EN(II,NY3-1,KK)-EN(II,NY3-2,KK))
RHO1(II,NY3,KK)=RHO1i(II,NY3-1,KK)
1./3.%(4.«RHO1(IT,NY3-1,KK)-RHO1(II,NY3-2,KK))
RHO2(II,NY3,KK)=RHO2(II,NY3-1,KK)
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1./3.%(4 . «RHO2(II,NY3~-1,KK)-RHO2(II,NY3-2,KK))
RHO(II,NY3,KK)=RHO1(II NY3,KK)+RHO2(II,NY3,KK)

EL3E
ENDIF

NOW DO THE UPPER B.C’S

IF(II.LT.LX3) THEN

UX(II,M,KK)=0.

VY(II,M,KK)=0.

WZ(II,M,KK)=0.

PR(II,M,KK)=PR(II, M-1,KK)
4./3.*PR(II,M-1,KK)-1./3,.*PR(II,M~2,KK)

TE(II,M,KK)=TE(II,M-1,KK)
1./3.%(4 . +TE(II ,M-1,KK)-TE(II ,M-2,KK))
EN(II,M,KK)=EN(II,M-1,KK)
1./3.%(4 . *EN(II ,M-1,KK)-EN(II,M-2,KK))
RHO1(II,M,KK)=RHO1(II,M-1,KK)
1./3.%(4.*RHO1(IT,M-1,KK)-REO1 (II,M-2,KK))
RHO2(II,M,KK)=RHO2(II,M-1,KK)
1./3.%(4.«RHO2(II,M~1,KK)-RHO2(II, ¥-2,KK))

RHO(II,M,KK)=RHO1{II,M,KK)+RHO2(II,M, KK)

ELSE
ENDIF

CONTINUE

NOW, START THE WALL B.C’S, NORMAL TO THE Z-AXIS
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FIRST, THE LEFT B.C,S

DO 135 II=1,L

DO 135 JJ=1,M

UK(II,1J,1)=UX{(II,JJ,2)

0.

PR(II,JJ,1)=PR(II,1J,2)
4./3.+PR(II,JJ,2)-1./3.#PR(II,J1J],3)

VY(II,JJ,1)=vY(II,JJ,2)
0.
WZ(II,JJ,1)=WZ(II,JJ,2)
0.
TE(IT,JJ,1)=TE(II,JJ,2)
1./3.%(4.*TE(II,JJ,2)-TE(II,JJ,3))
EN(II,JJ,1)=EN(II,JJ,2)
1./3.%(4.*%EN(II,JJ,2)-EN(IL,JJ,3))
RHO1(II,JJ,1)=RHO1(II,JJ,2)
RHO2(II,JJ,1)=RHO2(II,JJ,2)
RHO(II,JJ,1)=RHO1(II,JJ,1)+RHO2(II,JJ, 1)
1./3.%(4.%RHO(II,JJ,2)-RHO(II,JJ,3))

NOW DO THE UPPER B.C’S

UX(II,JJ,N)=UX(II,JJ,N~1)
0.
VY(II,JJ,N)=VY¥(II,JJ,N-1)
0.
WZ(II,JJ ,N)=WZ(II,JJ,N-1)
0.
PR(II,JJ ,N)=PR(II,JJ,N-1)
4./3.#«PR(II,JJ,N-1)-1./3.#PR(II,JJ,N-2)

TE(II,JJ,N)=TE(II,JJ ,N~-1)
1./3.%(4.*TE(I1,JJ,N-1)-TE(II,JJ,N-2))
EN(II,JJ,N)=EN(II,JJ ,N-1)
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1./3.+(4.+EN(II,JJ,N-1)-EN(II,JJ,N-2))
RHO1(II,JJ,N)=RHO1(IIL,JJ,N-1)
RHO2(II,JJ,N)=RHO2(II,JJ,N-1)

RHO(II,JJ,N)=RHO1(II,JJ, N)+RHO2(II,JJ,N)
1./3.+{4, +«RHO(II,JJ,N~1)~-RHO(II,JJ,N-2))

CONTINUE

THE FOLL. IS THE X-SWEEP
THE Y-DO-LOCP OF THE X-SWEEP

DO 140 K=2,N-1

DO 140 J=2 ,M-1

HERE WE UPDATE THE UCONX, THE X-DISSIPATIVE TERMS

DO 136 I=1,L

UCONX (1, I)=RHO1(I,J,K)

UCONX (2, I)=RHO(I,J,K)*UX(I,J,K)
UCONX (3, I)=RHO(I, J,K)*VY(I,J,K)
UCONX (4, I)=RHO(I,J,K)*WZ(I,J,K)
UCONX (5, I)=EN(I,J,K)

UCONX (6, I)=RHO2(T, J,X)

CONTINUE
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QO an

L9

THE X-SWEEP DO-LOOQP STRATS

o 150 I=2,L-1

THIS IF STATEMENT IS TO EXCLUDE THE DOMAIN THAT HAS NO FLOW

NOW START THE EXCIPLIST PORTION "THE RHS QF THE X-SWEEP’

PFX=PARTIAL DERIVATIVE OF F WRT X

PViX= Vi=====
PV2X= =V2

PGY G Y
PWiY= W1 ===Y
PwW2Y= W2 ===

DEFINE THE PREMITIVE VARIABLES AS FOLLOW3

THIS IS THE SUTHERLAND VISCOSITY RELATIONSHIP,

VISCOSITY OF STEAM
CST=861.1
TSR=416.1
AVSR=.1706E-6

AVS=AVSR* ( (TSR+CST) /(TE(I, J,K)+CST) )= (TE(I,J,K) /TSR) **1.5

VISCOSITY FOR AIR
CGT=110.6
TGR=273.1
AVGR=.1716E-6
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AVG=AVGR* { (TGR+CGT) / (TE(I, J,K)+CGT) )« (TE(I,J,X) /TGR) »*1 .5
C MIXTURE VISCOSITY

AVSGU=(1.+
((AVS/AVR) ** 5) % (AMOG/AMOS) %% . 25) %2
AVSGD=SQRT(8.)*(1.+AMOS/AMOG)** .5
PHISG=AVSGU/AVSGD
AMDS=18.
C ASSUMING OXYCAN ONLY.
AMOG=29.
AVGSU=(1.+
(C(AVR/AVS) %% 5) % (AMOS/AMOG) #% . 25) %2,
AVGSD=SGRT(8.)*(1.+AMOG/AMOS) x* 5
PHIGS=AVGSU/AVGSD

SFRAC=RHO1(I,J,K)/(RHO1(I,J,K)+RHO2(I,J,K))
GFRAC=RH02(I,J,K)/(RHO1(I,J,K)+RHO2(I,J,K))
AVIS=(SFRAC*AVS)/ (SFRAC+PHISG*GFRAC)+

/ (GFRAC*AVG) / (GFRAC+PHIGS*SFRAC)

c THK IS NOT NEEDED IN THIS PROGRAM BECAUSE IT IS INCLUDED IN
c THE PRNUM :
THK=CP#AVIS/0.72
ALAM=-2./3.%AVIS

c PRREM IS A COEFFICIENT.

PRREM=AVIS/ ((GAM-1.)*AMCINF*AMCINF*REINF*PRNUM)
c NONDIMENSIONALIZE AVIS AND ALAM.
C AVIS=AVIS/AMINF

]

ALAM=ALAM/AMINF



RPI=RHO(I+1,J,K)
RMI=RHD(I-1,J,K)
RIJ=RHO(I,J,K)

R1PI=RHO1(I+1,J,K)
RiIMI=RHO1(I-1,J,K)
R1IJ=RHO1(I,J,K)

R2PI=RHDO2(I+1,],K)
R2MI=RHO2(I-1,J,K)
R2IJ=RHO2(I,J,K)

UPI=UX(I+1,J,K)
UMI=UX(I-1,J,K)
UIJ=UX(I,J,K)
VPI=VY(I+1,J,K)
VMI=VY(I-1,]1,K)
VIJ=VY(I,J,K)
WPI=WZ(I+1,J,K)
WMI=WZ{I-1,J,K)
WIJ=WZ(I,J,K)
EPI=EN(I+1,J,K)
EMI=EN(I-1,J,K)
EIJ=EN(I,J,K)
PPI=PR(I+1,J,K)
PMI=PR(I-1,J,K}
PIJ=PR(I,J,K)
TPI=TE(I+1,J,K)
TMI=TE(I-1,J,X)
TIJ=TE(I,J,K)
BPI=BETA(I+1,J,K)
BMI=BETA(I-1,J,K)
BIJ=BETA(I,J,K)

RPJ=RHO(I, J+1,K)
RMJ=RHC(I,J-1,K)

R1PJ=RHO1(I,J+1,K)
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RiMJ=RHO1(I,J-1,K)

R2PJ=RHD2(I, J+1,K)
R2MJ=RHO2(I,J-1,K)

UPJ=UX(I,J+1.,X)
UMJ=UX(I,J-1,K)
VPI=VY(I,J+1,K)
VMI=VY(I,J-1,K)
WPJ=WZ(I,J+1,K)
WMJI=WZ(I,J-1,K)
EPJ=EN(I,J+1,K)
EMJ=EN(I,J-1,K)
PPI=PR(I, J+1,K)
PMI=PR(I,J-1,¥X)
TPJ=TE{I,J+1,K)
TMI=TE(I,J-1,K)
BPJ=BETA(I,J+1i,K)
BMJ=BETA(I,J-1,K)

RPK=RHO(I,J,K+1)
RMK=RHO(I,J,K-1)

R1PK=RHO1(I,J,K+1)
R1MK=RHO1(I,J,K-1)

R2PK=RHO2(I,J,K+1)
R2MK=RHO2(I, J,K-1)

UPK=UX(I,J,K+1)
UMK=UX(I,J,K-1)
VPK=VY(I,J,K+1)
VMK=VY(I,J,K-1)
WPK=WZ(I,J,K+1)
WMK=WZ(I,J,K-1)
EPK=EN(I,J,K+1)
EMK=EN(I,J,K-1)
PPK=PR(I,J,K+1)
PMK=PR(I, J,K-1)
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TPK=TE(I,J,K+1)
TMK=TE(I,J,K-1)
BPK=BETA(I,J,K+1)
BMK=BETA{I,J,K-1)

RPIPJ=RHO(T+1,J+1,K)
RMIPJ=RHO{I-1,J+1,K)

Ri1PIPJ=RHO1{I+1,J+1,K)
RIMIPJ=RHO1(I-1,J+1,K)

R2ZPIPJ=RHO2(I+1,J+1,K)
RZMIPJ=RHO2(I-1,J+1,K)

UPIPJ=UX{I+1,J+1,KD
UMIPJ=UX{I-1,J+1,K)
VPIPJ=VY(I+1,J+1,K)
VMIPJ=VY{I-1,J+1,K)
WPIPJ=WZ{I+1,J+1,K)
WMIPJ=WZ(I-1,J+1,K)
EPIPJ=EN{I+1,J+1,K)
EMIPJ=EN{I-1,J+1,K)

RPIMJ=RHO(I+1,J-1,K)
RMIMJ=RHO{I-1,J-1,K)

R1PIMI=RHO1(I+1,J-1,K)
RIMIMJ=RHO1(I-1,J-1,K)

R2PIMJ=RH02(I+1,J-1,K)
R2MIMJ=RHO2(I-1,J-1,K)

178



UPIMI=UX(I+1,J-1,K)
UMIMJI=UX(I-1,J-1,K)
VPIMI=VY(I+1,J-1,K)
VMIMJI=VY(I-1,J-1,K)
WPIMJI=WZ(I+1,J-1,K)
WMIMI=WZ(I-1,J-1,K)
EPIMJ=EN(I+1,J-1,K)
EMIMJ=EN(I-1,J-1,K)

RPIPK=RHO(I+1,J,K+1)
RMIPK=RHO(I-1,J,K+1)

R1PIPK=RHO1 (I+1,J,K+1)
RIMIPK=RHO1(I-1,J,K+1)

RZPIPK=RHO2(I+1,J,K+1)
R2ZMIPK=RHO2(I-1,J,K+1)

UPIPK=UX(I+1,J,K+1)
UMIPK=UX(I-t,J,K+1)
VPIPK=VY(I+1,J,K+1)
VMIPK=VY{I-1,J,K+1)
WPIPK=WZ{I+1,J,K+1)
WMIPK=WZ({I-1,J,K+1)
EPIPK=EN{(I+1,J,K+1)
EMIPK=EN(I-1,J,K+1)

RPIMK=RHO{I+1,J,K-1)
RMIMK=RHO(I-1,J,K-1)

R1PIMK=RHO1(I+1,J,K-1)
RIMIMK=RHO1(I-1,J,K-1)

R2PIMK=RHO2(I+1,J,K-1)
R2MIMK=RHO2(I-1,J,K-1)
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UPIMK=UX(I+1,J,K-1)
UMIMK=UX{I-1,J,K-1)
VPIMK=VY(I+1,J,K-1)
VMIMK=VY(I-1,J,K-1)
WPIMK=WZ (I+1,J,K-1)
WMIMK=WZ(I-1,J,K-1)
EPIMK=EN{I+1,J,K-1)
EMIMK=EN(I-1,J,K-1)

RPJIPK=RHO(I,J+1,K+1)
RMJPK=RHO(I,J-1,K+1)

R1PJPK=RHD1(I, J+1,K+1)
Ri1MJPK=RHO1(I,J-1,K+1)

R2PJPK=RHO2(I,J+1,K+1)
R2MJIPK=RHO2(I,J-1,K+1)

UPJPK=UX(I,J+1,K+1)
UMJPK=UX(IL,J-1,K+1)
VPJPK=VY (I, J+1,K+1)
VMJIPK=VY(I,J-1,K+1)
WPJPK=WZ(I,J+1,K+1)
WMIPK=WZ(I,J-1,K+1)
EPJPK=EN(I,J+1,K+1)
EMJPK=EN(I, J-1,K+1)

RPJIMK=REO(I, J+1,K~1)
RMJMK=RHO(I,J-1,K-1)

RiPJMK=RHO1(I,J+1,K-1)
R1MJMK=RHO1(I,J-1,K-1)
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RRPJMK=RHD2(T,J+1,K-1)
R2MIMK=RHO2(I,J-1,K-1)

UPJIMK=UX(I,J+1,K-1)
UMJMK=UX (I, J-1,K-1)
VPIMK=VY(I,J+1,K-1)
VMJIMK=VY(I,J~1,K-1)
WPIMK=WZ (I,J+1,K-1)
WMIMK=WZ(I,J-1,K-1)
EPJMK=EN(T,J+1,K-1)
EMIMK=EN(I,J-1,K-1)

THE FOLOWING STEPS ARE THE VELOCITIES EVALUATED HALF WAY
BETWEEN
CONSECUTIVE NODES

UPIH=(UPI+UIJ}/2.
UMIH=(UIJ+UMI)/2.
UPJH=(UPJ+UIJ)/2.
UMJH=(ULJ+UMJ) /2.
UPKH=(UPK+UIJ) /2.
UMKH= (UL J+UMK) /2,

VPIH=(VPI+VIJ)/2.
VMIH=(VIJ+VMI)/2.
VPJH=(VPJ+VIJ)/2.
VMIH=(VIJ+VMJ) /2.
VPKH=(VPK+VIJ)/2.
VMKH=(VIJ+VMK) /2.

WPIH=(WPI+WIJ)/2.
WMIH=(WIJ+WMI}/2,
WPJHE=(WPJ+WIJ)/2.
WMIH=(WIJ+WMJ) /2.
WPKH=(WPK+WI1J)/2.
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WMKH=(WIJ+WMK) /2.

RPIH=(RPI+RIJ)/2.
RMIH=(RIJ+RMI)}/2,
RPJH=(RPJ+RIJ}/2.
RMJBE=(RIJ+RMJ) /2.
RPKH=(RPK+RIJ)/2.
RMKH=(RIJ+RMK) /2.

BPIH=(BPI+BIJ)/2.
BMIH=(BIJ+BMI)/2.
BPJH=(BPJ+BIJ)/2.
BMJH=(BIJ+BMJI)/2.
BPKH=(BPK+BIJ)/2.
BMKH=(BIJ+BMK)/2.

THIS IS THE MASS FRACTION FOR CONTINUITY EQUATIONS

FRI1PI=RHO1(I+1,J,K)/RHD{(I+1,J,K)
FR1PJ=RHO1 (I, J+1,K) /RHO(I, J+1,K)
FR1PK=RHO1(I,J,K+1)/REO(I,J,K+1)

FR1IJ=RHO1(I,J,K)/RHO(I,J,K)

FRIMI=RHO1(I-1,J,K)/RHO(I-1,J,K)
FRIMJ=RHO1(I, J-1,K)/REO(I,J-1,K)
FRIMK=RHO1(I,J,K-1)/RHO(I,J,XK-1)

FR2PI=RHO2(I+1,J,K)/RHO(I+1,J,K)
FR2PJ=RH0O2(I, J+1,K) /RHO(I, J+1,K)
FR2PK=RH02(I,J,K+1) /RHO(I,J,K+1)

FR2IJ=RHO2(I,J,K)/RHO(I,J,K)
FR2MI=RHO2(I-1,J,K)/RHEO(I-1,J.K)

FR2MJ=RHO2(I,J-1,K) /RHO(I, J-1,K)
FR2MK=RH02(I,J,K-1)/RHO(I,J K-1)
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THESE ARE THE COEFFICIENT OF TRANSFORMATION

XXIJ=XX(I,J,K)*XX(I,J,K)*AIM(I,J,K)*BETA(I,J K)
YYIJ=YY(I,J,K)*YY(I,J,K)*AJM(I,J,K)*BETA(I,J K)
ZZIJ=ZZ(I,J,K)*ZZ(I,J,K)*AJIM(I,J,K)*BETA(I,J,K)

XPI=XX{I+1,J,K)*AIM(I+1,],K)*BETA(I+1,J,K)
XMI=XX(I-1,J,K)*AIM(I-1,J,K)*BETA(I-1,J,K)

YPJI=YY(I,J+1,K)*AIM(I, J+1,K)+«BETA(I,J+1,K)
YMI=YY(I,J-1,K)*AJM(I,J-1,K)*BETA(I,J-1,K)

ZPK=ZZ(I,J K+1)*AJIM(I,J K+1)*BETA(L,J, K+1)
ZMK=ZZ(I,J,K-1)*AJM(I,J,K-1)*BETA(I,J,K-1)
KXPI=XX(I+1,J,K)*XX(I+1,J,K)*«AIM(I+1,J,K)*BETA(I+1,J,K)

XXMI=XX(I-1,J,K)*XX(I-1,J,K)*AJM(I-1,J,K)*BETA(I-1,J,K)

YYPJ=YY(I, J+1,K)*YY(I,J+1,K)=AJM(I, J+1,K)*BETA(I, J+1,K)
YYMJI=YY(I,J-1,K)»YY(I,J-1,K)*AIM(I,J-1,K) *BETA(I,J-1,K)

ZZPK=ZZ(I,J,K+1)*ZZ(I,J ,K+1)*AJM(I,J,K+1)*BETA(I,J K+1)

ZZMK=ZZ(I,J,K-1)»ZZ(T,J,K-1)*AJM(I,J,K-1)}*BETA(I, J,K-1)

XYPI=KX(I+1,J,K)*YY(I+1,J,K)*AJM(I+1,J,K)*BETA(I+1,],K)
KYMI=XX(I-1,J,K)*YY(I-1,J,K)*AIM(I-1,J,K)*BETA(I-1,J,K)
IYPJI=XX(I,J+1,K)+¥YY (L, J+1,K)+AIM(I, J+1 K)+BETA(I, J+1,K)
XYMJ=XX(I,J-1,K)+YY(I,J-1,K)*AJM(T,J~1,K)«BETA(L,J-1,K)

XZPI=XX(I+1,J,K)*ZZ(I+1,J,K)*AJM(T+1,J,K)*BETA(I+1,],K)
XZMI=XX(I-1,J,K)*ZZ(I-1,J,K)»AJM(I-1,J K)*BETA(I-1,J,K)
XZPK=XX(1,J,K+1)%2Z(1,J, K+1)*AIM(I, J,K+1)+«BETA(I,J K+1)
XZMK=XX(I,J,K-1)%ZZ(I,J,K~1)*AIM(I,J,K-1)*BETA(I,J,K-1)

YZPJ=YY(I,J+1,K)*ZZ(T,J+1,K)*AJM(T, J+1,K)*BETA (I, J+1,X)
YZMI=YY(I,J-1,K)*2ZZ{L,J-1,K)*AJM(1,J-1,K)*BETA(I,J-1,K)
YZPK=YY(IL,J K+1)*ZZ(I,J K+1)*AJM(I,J,K+1)*BETA(I,J ,K+1)
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YZMK=YY(I,J,K-1)}*ZZ(I,J,K-1)*AJM(I,J,K-1)*BETA(I,J,K-1)

C COEFIICIENTS EVALUALUATED HALF WAY

XXPIH=(XXPI+XXIJ}/2.
XXMIH=(XXMI+XXIJ)/2.

YYPJH=(YYPJ+YYIJ) /2.
YYMJIH=(YYMI+YYII) /2.

ZZPKH=(ZZPK+ZZIJ) /2.
ZZMKH= (ZZMK+ZZIJ) /2.

o NEW CONSERVITIVE VARIABLES UPDATE
UNEW(1,I,J,K)=RHO1(I,J,K)
UNEW(2,I,J,K)=REO(I,J,K)*UX(I,J,K)
UNEW(3,1,J,K)=RHO(I,J,K)*VY(I,J,K)
UNEW(4,I,J,K)=RHO(I,J,K)*WZ(I,J,K)
UNEW(5,I,J,K)=EN(T,J,K)
UNEW(§,I,J,K)=RHD2(I,J.K)

C START PFX

PFX(1)=(1./DX)*(XPI*R1PI*UPI-XMI*R1MI*UMI)/BIJ
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PFX{(2)=(1./DX)* (XPI*RPI+*UPI+UPI-XMI*RMI*UMI*UMI}/BIJ+
/1. /DX*(XPI+PPI-XMI*PMI) /BT

PFX(3)=(1./DX)* (XPI+*RPI+UPI+VPI-XMI*RMI*+UMI*VMI) /BI.J
PFX(4)=(1./DX)*(XPI*RPI*UPI*WPI-XMI+#RMI*UMI*WMI)/BIJ
PFX(5)=(1./DX)*(XPI*(EPI+PPI)*UPI-XMI* (EMI+PMI)*UMI) /BIJ
PFX(6)=(1./DX)*(XPI*R2PI#UPI-XMI*R2MI*UMI) /BIJ

START THE POROSITY TERM FORDRV

THIS IS FOR POROUS MEDIUM

IF(PORNTP.EQ.O.) THEN
PER IS THE PERMIABILITY

PER=1.
PORNTP =0. WHEN NONPOROUS MEDIA IS USED

CER IS ERGUN FACTOR IN THE ERGUN EQUATION

CER=0.
ELSE

THE FAR STREAM VALUES AR INCLUDED HERE WHICH BELONG TO
THE POROUS MEDIUM SOURCE

ALSO REMEMBER THAT THIS FACTOR IS INVERSED WHEN INCLUDED
WITHE THE PER BECAUSE IT

IT IS PUT IN THE DENOMINATOR.
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PER=DP*DP*BIJ*BIJ*BIJ/(150.% (1. -BIJ)**2 Jx
/RINF*VINF/ (ALINF*AMINF)
CER=1.75%(1.-BIJ)/(DP*BIJ*BIJ*BI.J)*ALINF*VINF

ENDIF

THIS IS FOR SHELL AND TUBE PCROUS MEDIUM
IF(PORNTS.NE.OQ.) THEN

THIS IS THE SOURCE TERM OF SHELL AND TUBE.
REX=RIJ*RINF*UILJ*VINF*DSO/ (AVIS*AMINF)
REY=RIJ*RINF*VIJ*VINF*DSO/ (AVIS*AMINF)
REZ=RIJ*RINF+WIJ*VINF*DSO/(AVIS+AMINF)

IF(REX.LT.8000.) THEN
ARX=. 619

BRX=.198

ELSE

ARX=1.156

BRX=.2647

ENDIF

IF(REY.LT.8000.) THEN
ARY=.619

BRY=.198

ELSE

ARY=1.156

BRY=. 2647
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ENDIF

IF(REZ.LT.8000.) THEN
ARZ=.619

BRZ=.198

ELSE

ARZ=1.156

BRZ=.2647

ENDIF

IF(REX.GT.2.E6.0R.REY.GT.2.E5.0R.REZ.GT.2.E5) WRITE(*,#)
/"REYNOLD’S NUMBER OUT OF RANGE"

GG1=(RINFxVINF/AMINF)

GG2=2.*ALINF/ (PIT*RINF)
GG3=(1.-BIJ)/(1.-BETAT)
GG4=((PIT*BIJ)/(PIT-D30) ) #*2.
GG5=(DS0/AVIS)

GGX=CGG1%x* (-BRX) *GG2*xARX*GG3*xGG4*GGEx+ (-BRX)

GGY=GG1%* {-BRY)*GG2*ARY*GG3*GG4*GG5++ (-BRY)

GGZ=GC1%+* (-BRZ) *GG2+*ARZ*GG3*GG4+GG5** {-BRZ)
ELSE

ENDIF
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THIS IS THE ERGUN FACTOR

ERGUN(1}=0.

ERGUN(2)=~AVIS*BIJ*UIJ/PER-

/RIJ#CER*BIJ#BIJ* (ULJ#ULJ+VII*VIJ+WIJ*WIJ) *ULJ

ERGUN (3)=-AVIS*BIJ*«VIJ/PER-
/RIJ*CER*BIJ*BIJ*(UIJ*UIJ+VIJ*VIJ+WII*WIJ)*VIJ

ERGUN (4)=-AVIS+BIJ*WIJ/PER-
/RIJ*CER#BIJ*BIJ* (UIJ*UIJ+VIJ*VIJ+WIJ*WIJ)*xWIJ

ERGUN(B)=0.
ERGUN(6)=0.

DEFINITION OF TERMS

AMM=RIJ*UTLJ

ANN=RIJ*VIJ

AQQ=RIJ*WIJ
TERMP=(AMM*#*2  +ANN**2, +AQQ**2, Y% ( 5)
IF(UIJ.EQ.0.AND.VIJ.EQ.0.AND.WIJ.EQ.0.) THEN
TERMM=0.

ELSE

TERMM=(AMM*%2  +ANN+%2 +AQQ**2, Y**(-.5)

ENDIF

ABSM=ABS (AMM)

ABSN=ABS {ANN)

ABSQ=ABS(AQQ)

THIS IF STATMENTS IS PUT TO GUARANTEE THAT WE DO NOT HAVE
OVER FLOW WHEN HAVING ZERO VELOCITY

BECAUSE OF THE NEGATIVE EXPONENT

WRITE(*,*) UILJ,VIJ,BRX,BRY

ERGUNS(1)=0.

IF(UIJ.EQ.0.) THEN
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ERGUNS(2)=0.

ELSE

ERGUNS (2)=-GGX/ (RIJ#%2. ) *ABSM** (~BRX) *AMM*TERMP
ENDIF

IF(VIJ.EQ.0.) THEN

ERGUNS(3)=0.

ELSE

ERGUNS (3)=-GGY/ (RIJ#*2, ) *ABSN*x (~BRY) *ANN*TERMP
ENDIF

IF(WIJ.EQ.0) THEN

ERGUNS (4)=0.

ELSE

ERGUNS (4)=-GGZ/ (RIJ*#*2, ) *ABS(** (~-BRZ) *AQQ*TERMP
ENDIF

ERGUNS (53 =0,

ERGUNS(6)=0.
WRITE(*,%*) ERGUNS(2),ERGUNS(3),ERGUNS(4),ITIME

START PVi1X

PV1X(1)=GEE/(DX1+DX1*BIJ)*(XXPIH+*RPIH*(FR1PI-FR1IJ)-
/XXMIH*RMIH* (FRAIJ-FRIMI))

PV1X(2)}=1./(BIJ*REINF*DX1%*2, )% (XXPIH*ALV*(UPI-UIJ)-
FAXMIB#ALV*(UIJ-UMI))

PViX(3)=1./(BIJ*REINF+DX1%%2. )% (XXPIH*AVIS*(VPI-VIJ)~
/XXMIB*AVIS*(VEJ-VMI))
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PViX(4)=1./(BIJ*REINF#DX1%*%2.)* (XXPIH*AVIS*(WPI-WIJ)-
/XXMIH*AVIS* (WIJ-WMI))

PV1X(5)=1./(BIJ*REINF#DX1%%2 ) *(XXPIH*ALV+UPIH*(UPI-UIJ)-

/XXMIH*ALV*UMIH* (UIJ-UMI))
/+1./(BIJ*REINF*DX1%%2.) * (XXPTH*AVIS*VPIH+(VPI-VIJ)-
/XXMIH*AVIS*VMIH*(VIJ-VMI))

/+1./ (BIJ*REINF*DX1%*2, ) % (XXPIH*AVIS*WPIH* (WPI-WIJ)-
FXXIMIH*AVIS*WMIH* (WIJ-WMI))

/+PRREM/(BIJ*DX1#%%2 )*(XXPIH*(TPI-TIJ)~

/XIMIH* (TIJ-TMI))

PViX(6)}=CEE/(DX1*DX1+BIJ)*(XXPIH+*RPIR* (FR2PI-FR2IJ)~-
JXXMIH*RMIH* (FR2IJ~FR2MI))

NOW DD PV2X

PV2X(1)=0.
PV2X(2)=1./(BIJ*DX#*DY)* (ALAM*XYPI* (VPIPJ-VPIMI)}-
/ALAM*XYMI* (VMIPJ-VMIMJI))*1./REINF

PV2X(3)=1./{BIJ*DX*DY)* (AVIS*XYPI*» (UPIPJ-UPIMJ) -
/AVIS*XYMI* (UMIPJ-UMIMJI) )%
/1./REINF

PV2X(4)=0.

PV2X(5)=1./(BIJ*DX#DY) * (ALAMAUPI*XYPI* (VPIPJ-VPIMJI)~
JALAM*UMI*XYMI* (VMIPJ-VMIMI))*

/1./REINF

/+1./(BIJ*DX*DY)* (AVIS*VPI*XYPI* (UPIPJ-UPIMI)~
/AVIS*VMI*XYMI*(UMIPJ-UMIMJ))*

/1./REINF

PV2X(6)=0.

START THE PV3X
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PV3X(1)=0.
PV3X(2)=1./(BIJ*DX4DZ)* (ALAM*XZPI* (WPIFPK-WPIMK) -
JALAM*XZMI* (WMIPK-WMIMK) )*

/1./REINF

PV3X(3)=0.
PV3X(4)=1./(BIJ*DX*DZ) * (AVIS*XZPI* (UPIPK-UPIMK) -
JAVIS*XZMI* (UMIPK-UMIMK) ) *

/1. /REINF

PV3X(5)=1./(BIJ*DX*DZ)* (ALAM*UPI*XZPI* (WPIPK-WPIMK)—
JALAMSUMI*XZMI* (WMIPK-WMIMK) ) *

/1./REINF

/+1./(BIJ*DX*DZ)* (AVIS*XZPI+WPI*{UPIPK-UPIMK) -
FAVIS*XZMI*WMI* (UMIPK-UMIMK) ) *

/1. /REINF

PVY3X(6)=0.

START THE PGY

PGY(1)=1. /(DY) *(YPJ*R1PJ*VPJ-YMI*R1MJI*VMJ) /BIJ
PGY(2)=1./ (DY)« (YPI*RPJ+«UP J+VPJ-YMJI*RMI+UMJI=VMJ) /BIJ

PGY(3)=1. /(DY) *(YPJI*RPJ*VPJ*VPJ-YMJ*RMJ*VMJ*VMJI) /BLJ
/+1. /(DY) *(YPJI*PPJ-YMJ*PMJ) /BIJ

PGY(4)=1./ (DY) * (YPJI+*RPJ*VPJ+WPJ-YMJ+RMI*VMJI*WMJI) /BIJ

PGY(S)=1. /(DY) = (YPJ*(EPJ+PPJ) *VPJ-YMJI* (EMJ+PMJI) *VMJ) /BIJ

PGY(6)=1./(DY)*(YPJ*R2PJ*VPJ-YMJI*R2MJ*VMJ) /B1J
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NOW START PW1Y
PW1Y(1)=0.

PW1Y{2)=1./(BIJ*DY*DX)* (AVIS*XYPJI* (VPIPJ-VMIPJ) -
JAVIS* XYM« (VPIMJI-VMIMI) ) *
/1./REINF

PW1Y(3)=1./(BIJ*DY*DX) » (ALAM*XYPJ* (UPIPJ-UMIPJ) -
/ALAM*XYMJ* (UPIMJ-UMIMI) ) *
/1./REINF

PW1Y(4)=0.

PW1Y(5)=1./(BIJ*DY*DX)* (AVIS*XYPJ*UPJ* (VPIPJ-VMIPJ) -
/AVIS*XYMI*=UMJ# (VPIMJI-VMIMI) )+

/1. /REINF+

/1./(BIJ*DY*DX)*(ALAM*VPJ*XYPJ* (UPIPJ-UMIPJ) -
/ALAM*XYMI*VMI* (UPIMJI-UMIMI) ) »

/1./REINF

PW1Y(6)=0.

THIS IS PW2Y

PW2Y(1)=GEE/(DY1xDY1xBIJ)*=(BPJH*YYPJH=(FR1PJ-FR1IJ)-
/YYMIHRMIH* (FRIIJ-FR1MJ))

PW2Y(2)=1./(BIJxDY1%**2 )= (AVIS*YYPJH* (UPJ-UIJ)-
JAVIS*YYMIH* (ULI-UMJI) ) *
/1. /BEINF

PW2Y(3)=1./(BIJ*DY1ixx2 ) *x (ALV*YYPJH*(VPJ-VIJ)
/=ALV*YYMIH* (VIJ-VMJ) ) *

192



/1. /REINF

PW2Y(4)=1./(BIJ*DY1%%2. )+ (AVIS*YYPJH* (WPJ-WIJ)-
FAVIS*YYMIH* (WIJ-WMJ))*
/1. /REINF

PW2Y(5)=1./(BIJ+DY1%*2, ) * (AVIS*YYP JH*UPJH* (UPJ-ULJ)-
/AVIS*YYMIH*UMJH* (UTJ-UMJ) )*1. /REINF
f+1./(BIJ*DY1**2 )% (ALV*YYPJH*VPJH*{(VPJ-VIJ)~-
JALV*YYMIHAVMIH® (VIJ-VMJ) ) =
/1./REINF
/+1./(BIJ*DY1%%2, )% (AVIS*YYP JH*WP JH* (WPJ-WIJ)-
/AVIS*YYMIH*WMJIH*{WIJ-WMJ) ) *

/1. /BREINF
/+1. /(BIJ*DY1#»*2, )« (YYPJH*(TPJ-TIJ)-
/YYMJIH# (TIJ-TMJ) ) *PRREM

PW2Y(8)=CGEE/(DY1+*DY1+BIJ)*(YYPJH*RPJH* {FR2PJ-FR2IJ)~
JYYMIH*RMJH* (FR2IJ-FR2MJ))

START THE PW3Y
PW3Y(1)=0.
PW3Y(2)=0.

PW3Y(3)=1./(BIJ*DY+DZ) * {ALAM*YZPJ* (WP JPK-WPJMK) -
JALAM*YZM % (WMJIPK-WMJIMK) ) %
/1./REINF

PW3Y(4)=1./(BII*DY*DZ) * (AVIS*YZPJ* (VPJFPK-VPIMK) -
JAVIS*YZMI* (VMIPK-VMIMK) ) %
/1./REINF

PW3Y(5)=1./(BIJ*DY*DZ)* (ALAM*YZP J*VPJ* (WP JPK-WPJIMK) -
/ALAM*YZMJI*VMJ*

/ (WMJPK-WMJIMK) ) *1, /REINF
J+1./(BIJ*DY*DZ) * (AVIS*WPI*YZPJ* (VPJPK-VPIMK) -
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FAVIS*WMIwYZMI* (VMIPK-VMJIMK) ) %
/1./REINF

PW3Y(6)=0.

START THE PHZ

PHZ(1}=1./DZ*(ZPK*R1PK*WPK-ZMK+*R1MK*WMK) /BIJ
PHZ(2)=1./DZ* (ZPK+RPK*UPK*WPK-ZMK*RMK+UMK*WMK) /BI J
PHZ (3)=1./DZ% (ZPK+RPK*VPK*WPK-ZMK*RMK*VMK+WMK) /BLJ

PHZ (4)=1. /DZ% (ZPK+#RPK#WPK*WPK-ZMK*RMK+WMK*+WMK) /BRI J
/+1./DZ%{ZPK+PPK-ZMK*PMK) /BLJ

PHZ (6)=1./DZ* (ZPK* (EPK+PPK) *WPK- ZMK* (EMK+PMK) *WMK) /BIJ

PHZ(6)}=1. /DZ#(ZPK*RIFPK*WPK-ZMK*ROMK*WMK) /B1J

START THE PE1Z

PE1Z{(1)=0.
PE1Z{2)=1./(BIJ*DZ*DX)* (AVIS*XZPK* (WPIPK-WMIPK) -
JAVIS*XZMK* (WPIMK-WMIMK) ) =

/1./REINF

PE1Z(3)=0.



PE1Z(4)=1./(BIJ*DZ*DX) + (ALAM*XZPK* (UPIPK-UMIPK) -
/ ALAM*XZMK# (UPIMK-UMIMK) ) *
/1. /REINF

PE1Z{B)=1./(BIJ*DZ*DX)* (AVIS*XZPK*UPK* (WPIPK-WMIFK)-
/AVIS*XZMK*UMK*

/ (WPIMK-WMIMK))*1./REINF
/+1./(BIJ*DZ*DX) * (ALAM*XZPK*WPK* (UPIPK-UMIPK) -

/ ALAM*E ZMK «WMK* (UPIMK-UMIMK) ) *

/1./REINF

PE1Z(6)=0.

NOW START THE PE22Z

PE2Z(1)=0.
PE2Z(2)=0.

PE2Z(3)=1./(BIJ*DZ*DY)* (AVIS*YZPK* (WP JPK-WMJIPK) -
/AVIS*YZMK* (WP JMK-WM.JMK) ) %
/1./REINF

PE2Z (4)=1./(BIJ*DZ#*DY)* (ALAM*YZPK»* (VP JPK~VMJPK) -
/ALAM*YZMK* (VP IMK-VMJMK) ) *
/1. /REINF

PE2Z(5)=1./(BIJ+DZ+*DY) * (AVIS#YZPK*xVPK* (WP JPK-WMJPK) ~
/AVIS*YZMK*VMK#

/ (WP IMK~WMJIMK) ) *1. /REINF
/+1./(BIJ*DZ*DY) * (ALAM*YZPK+WPK* (VP JPK-VMJIPK) -
/ALAM*YZMK*WMK * (VP JMK-VMIMK) ) %

/1./REINF

PE2Z(6)=0.
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START THE PE3Z

PE3Z(1)=GEE/(DZ1*DZ1*BIJ)*(ZZPKH*RPKH* (FR1PK~FR11J)-
/ZZMKH*RMKH* (FR1IJ-FR1MK))

PE3Z(2)=1./(BIJ*DZ1+DZ1) * (AVIS*ZZPKH* (UPK-UIJ) -
/AVIS*ZZMKH* (UIJ-UMK) ) *1./REINF

PE3Z(3)=1./(BIJ*DZ1*DZ1) * (AVIS**»ZZPKH* (VPK-VII) -
JAVIS*ZZMKH* (VIJ-VMK) ) =1, /REINF

PE3Z{4)=1./(BIJ*DZ1%DZ1)* (ALV*ZZPKHx* (WPK-WIJ)-
FALV*ZZMKH* (WI.J-WMK) ) =1, /REINF

PE3Z(5)=1./(BIJ*DZ1*DZ1)* (AVIS*ZZPKH*UPKH* (UPK-ULJ)-
/AVIS*ZZMKH*UMKH=* (U1 J-UMK))*1. /REINF
/+1./(BIJ*DZ1+DZ1)* (AVIS*ZZPKH*VPKH* (VPK-VIJ) -
SAVIS*ZIMKH*VMEKH* (VIJ-VMK) )%

/1./REINF
/+1./(BIJ*DZ1+DZ1) * (ALV*ZZPKH*WPKH* (WPK-WIJ)-
/ALV*ZZMKH*WMKH* (WIJ-WMK) ) *

/1./REINF
/+1./(BIJ*DZ1%DZ1)* (ZZPKH* (TPK-TIJ)-

/ZZMKH* (TIJ-TMK) ) *PRREM

PE3Z{(6)=GEE/(DZ1+DZ1+BIJ)*(ZZPKH+RPKH* (FR2PK-FR2IJ)-
/ZZMKH*RMKH* (FR2IJ-FR2MK))

NOW START THE N-1 TERMS
PXDV2= THE PARTIAL DERIVATIVE OF DV2 AT N-1 WRT X
PYDWi= DWl =ma=m=meaao

IF(ITIME.EQ.1) THEN
PXDV2(1)=0.
PXDV2(2)=0.
PXDV2(3)=0.
PXDV2(4)=0.
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PIDV2(5)=0.
PXDV2(6)=0.

PXDV3(1)=0.
PXDV3(2)=0.
PXDV3(3)=0.
PXDV3(4)=0.
PXDV3(5)=0.
PXDV3(6)=0.

PYDW1(1)=0.
PYDW1(2)=0.
PYDW1(3)=0.
PYDW1(4)=0.
PYDW1(5)=0.
PYDW1(6)=0.

PYDW3(1)=0.
PYDW3(2)=0.
PYDW3(3)=0.
PYDW3(4)=0.
PYDW3 (5)=0.
PYDW3(6)=0.

PZDE1(1)=0.
PZDE1(2)=0.
PZDE1(3)=0.
PZDE1(4)=0,
PZDE1(E)=0.
PZDE1(6)=0.

PZDE2(1)=0.
PZDE2(2)=0.
PZDE2(3)=0.
PZDE2(4)=0.
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PZDE2(5)=0.
PZDE2(6)=0.

ELSE

PXDV1(1)=PV1iX(1)-PV1X2(1,I,J,K)
PXDV1(2)=PV1iX(2)-PV1X2(2,I,J,K)
PXDV1(3)=PV1X(3)-PV1X2(3,I,J,K)
PXDV1(4)=PV1X(4)-PV1X2(4,I,],K)
PXDV1(5)=PV1X(5)-PV1X2(5,I,J,K)
PXDV1(6)=PV1X(6)-PV1X2(6,I,],K)

PXDV2(1)=PV2X(1)-PV2X2(1,1,J,K)
PXDV2(2)=PV2X(2)-PV2K2(2,1,J,K)
PXDV2(3)=PV2X(3)-PV2X2(3,I,J,K}
PXDV2(4)=PV2X(4)-PV2K2(4,I,J,K)
PXDV2(5)=PV2X(5)-PV2X2(5,I,J,K)
PXDV2(6)=PV2X(6)-PV2X2(6,I,J,K)

PXDV3(1)=PV3X(1)-PV3X2(1,I,J.K)
PXDV3(2)=PV3X(2)-PV3k2(2,I1,],K)
PXDV3(3)=PV3X(3)-PV3X2(3,I,J.K)
PXDV3(4)=PV3X(4)-PV3k2(4,I,J,X)
PXDV3(5)=PV3X(5)-PV3X2(5,I,J,K)
PXDV3(6)=PV3X(6)-PV3X2(6,I,J.K)

PYDW1{1)=PWiY{1)-PW1Y2(1,I1,1,K)
PYDW1(2)=PW1Y(2)-PW1Y2(2,I,J,K)
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PYDW1(3)=PW1Y(3)-PW1iY2(3,I,J,K)
PYDW1 (4)=PW1Y(4)-PW1Y2(4,I,J,K)
PYDW1(5)=PW1Y(5)-PW1Y2(5,1,J,K)
PYDW1(6)=PW1Y(6)~-PW1Y2(6,I,J,K)

PYDW2 (1)=PW2Y (1) -PW2Y2(1,T,J,K)
PYDW2(2)=PW2Y(2)-PW2Y2(2,I,J,K)
PYDW2(3)=PW2Y(3)-PW2Y2(3,I,J,K)
PYDW2(4) =PW2Y(4)-PW2Y2(4,1I,J,K)
PYDW2(5)=PW2Y(5)-PW2Y2(5,I,J,K)
PYDW2(6) <PW2Y (6) -PW2Y2(6,I,J,K)

PYDW3(1)=PW3Y(1)-PW3Y2(1,I,J,K)
PYDW3 (2)=PW3Y(2)-PW3Y2(2,I,J,K)
PYDW3(3)=PW3Y(3)-PW3Y2(3,I,],K)
PYDW3(4)=PW3Y(4)-PW3Y2(4,I,J,K)
PYDW3(5)=PW3Y{(5)-PW3Y2(5,1,J,K)
PYDW3(6)=PW3Y(6)-PW3Y2(6,I,J,K)

PZDE1(1)=PEiZ(1)-PE1Z22(1,1,J,K)
PZDE1(2)=PE1Z(2)-PE122(2,I,J,K)
PZDE1(3)=PE1Z(3)-PE1Z2(3,I,J,K)
PZDE1(4)=PE1Z(4)-PE122(4,I,J,K)
PZDE1(5)=PE1Z(5)-PE122(5,I,J,K)
PZDE1(6)=PE1Z(6)-PE122(6,I,J,K)

PZDE2(1)=PE2Z(1)-PE2Z2(1,I,J,K)
PZDE2(2)=PE2Z (2)-PE2Z2(2,I,J,K)
PZDE2(3)=PE2Z (3)-PE2Z2(3,1,J,K)
PZDE2(4)=PE2Z(4)-PE2Z2(4,I,J,K)
PZDE2(5)=PE2Z(5)-PE2Z2(5,I,J,K)
PZDE2(6)=PE2Z(6)-PE222(6,1,J,K)

PZDE3(1)=PE3Z(1)-PE3Z22(1,I,J],K)
PZDE3(2)=PE3Z(2)-PE3Z2(2,I,],K)
PZDE3(3)=PE3Z(3)-PE322(3,1,],K)
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PZDE3 (4)=PE3Z(4)-PE3Z2(4,1,J,K)
PZDE3(5)=PE3Z(5)~PE322(5,I,J,K)
PZDE3(6)=PE3Z(6)-PE3Z2(6,I,J,K)
THIS IS FOR POROUS MEDIUM

ENDIF

DEPOSIT THE V2 AND W1 AT N-1 INTO PV2X2 AND PW1Y¥Y2 RESP.

DO 160 KK=1,IS

PV1iX2(KX,I,J,K)=PV1X(KK)
PV2X2(KK,I,J,K)=PV2X{KK)
PV3X2(KK,I,J,K)=PV3X (KK)

PW1Y2(KK,I,J,K)=PW1Y(KK)
PW2Y2(KK, I, J,K)=PW2Y(KX)
PW3Y2(KK,I,J,K)=PW3Y(KK)

PE1Z2(KK,I,J,K)=PE1Z(KK)
PE2Z2(KK,I,J,K)=PE2Z(KK)
PE322(XK,I,J,K)=PE3Z (KK)

160 CONTINUE



COURNT=1,
ABS(UX(I,J,K))+SQRT(GAM«PR(I,J,K)/RHO(I,J,K))*DT/DX1

IF(I.EQ.2.AND.J.GT.NY2) THEN

UCON(1)=0.
UCON({2)=0.
UCON(3)=0.
UCON(4)=0.
UCON(5)=0.
UCON(6)=0.
ELSEIF(I.EQ.(L-1).AND.J.LT.NY3) THEN

UCON(1)=0.
UCON(2)=0.
UCON(3)=0.
UCON (4)=0.
UCON(5)=0.
UCON(6)=0.

ELSEIF(I.EQ.2.AND.J.LE.NY2) THEN

UCO1M1=RHO1(I,J,K)
UC02M1=-UX(I, J,K)*RHO(I, J,K)
UCO3M1=-VY(I,J,K)*RHO(I,J,K)
UC04M1=-WZ (I, J,K)*RHO(I,J,X)
UCO5M1=EN(I,J,X)
UcOsM1=RHO2(I,J,K)

UCON{1)=AJM(I,J,K)*EPSX*COURNT* (UCONX (1,I+2)-
/4. *UCONK(1,I+1)+6.%UCONX(1,I)-
/4. *UCONX{1,I-1)+UCO1M1)
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UCON(2)=AIM(I,],K)*EPSX*COURNT* {UCONX (2, I+2) -
/4. *UCONX(2,I+1)+6. *UCONX(2,I)~
/4. «UCONX{2,I-1)+UCD2M1)

UCON{(3)=AJM(I,J,K)*EPSE*COURNT* (UCONX (3, I+2) -
/4. *UCONX(3,I+1)+6. *UCONX(3,I)-
/4. *UCDNX (3, I-1)+UC0O3M1)

UCON (4)=AJM(I,J,K)*EPSX«COURNT* (UCONX (4, I+2)-
/4. *UCONX(4,I+1)+6.+UCDONX(4,I)-
/4. *=UCONX (4, I-1)+UC04M1)

UCON(5)=AJM(I, J,K) *EPSX+COURNT* (UCONX(5,I+2) -
/4. *UCONX(5,I+1)+6. *UCONX(5,1)~
/4. =UCONX (5, I-1)+UCOEM1)

UCON{(6)=AIM(I, J,K) +EPSX*COURNT* (UCONX (6, I+2)~
/4. *UCONX(6,I+1)+6 =UCONX(6,I)-
/4 .*xUCONX (6, I-1)+UCO6ML)

ELSEIF(I.EQ.(L-1).AND.J.GE.NY3) THEN

UCO1P1=RHO1(I,J,K)
UC02P1=-UX(I,J,K)*RHO{I,J,K)
UC03P1=-VY (I, J,K)*RHO(I,J,K)
UCD4P1=-WZ(I,J,K)=RHO(I,J,K)
UCOSP1=EN(I,J,K)
UCO6P1=RHO2(I,J,K)

UCON(1)=AJM(I,J,K)*EPSX*COURNT* (UCO1P1~

/4. «UCONX(1,I+1)+6, *UCONX(1,I)-
/4. *UCONX(1,I-1)+UCONX(1,I-2))

UCON{2)=AJM(I,J,X)*EPSX*COURNT* (UC0O2P1-



/4. *UCONX(2,I+1)+6.+UCONX (2,1}~
/4. «UCONX (2, I-1)+UCONX(2,I-2))

UCON (3)=aJM(I,J,X)*EPSX*COURNT* (UCO3P1-
/4. *UCONX{(3,I+1)+6 . «UCONX(3,I)-
/4 +UCONX(3,I-1)+UCONX(3,I-2))

UCON(4)=AIM(I,J,K)*EPSX*COURNT* (UCO4P1~
/4 . +UCONX (4, I+1)+6 . *UCONX(4,I)-
/4. *UCONK(4&,T-1)+UCONX(4,I-2))

UCON{B)=AJM(I,J, K)+*EPSX*COURNT*{UCO5P1-
/4. «UCONX(5,I+1)+6 . »UCONX(5,I)-
/4. *UCONX (5, I-1)+UCONX(5,I-2))

UCON(6)=AJM(I,J,K)*EPSX*COURNT* (UCO6P1-

/4. *UCONX(6,I+1)+6,*UCONX(6,I)-
/4. *UCONX(6,I-1)+UCONK(6,I-2))

ELSE

UCON(1)=AJIM(I,J,K)*EPSX*COURNT* (UCONX {1, I+2)-

/4. *UCONX(1,I+1)+6.=UCONX(1,I)-
/4. *UCONX (1, I-1)+UCONX(1,I-2))

UCON(2)=AJM(I,J,K) *EPSX*COURNT* (UCONX(2,I+2)-

/4. *UCONX(2,I+1)+6 »UCONX(2,I)~
/4. =UCONX (2, I-1)+UCONX(2,I-2))

UCON(3)=AJM(I,J,K)*EPSX*COURNT* (UCONX(3,I+2)~

/4. ¥UCONX (3, I+1)+6,«UCONX(3,I)-
/4. *UCONK(3,I-1)+UCONX(3,I-2))

UCON (4)=AJM(I,J,K)*EPSX«COURNT* (UCONX (4, I+2}-

/4. =UCONK(4,I+1)+6.*UCONX(4,I)-
/4.»UCONX(4,I-1)+UCONX(4,I-2))
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UCON (5)=AJM(I,J,K)*EPSX*COURNT* (UCONX (5, I+2)~
/4 .*UCONX(5,I+1)+6 .*UCONX(5,I)~

/4. *UCONX(5,I-1)+UCONX(5,I-2))
UCON(6)=AJM(I,J,K)*EPSX+COURNT* (UCONX(6,I+2)—

/4 .*UCONX(6,I+1)+6.+«UCONX(6,I)~
/4.*UCONX(6,I-1)+UCONX(6,I~2))

ENDIF

NOW DO DU(N-1)
IF(ITIME.EQ.1) THEN

DELU(1)=0.
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DELU(2)=0.
DELU{3)=0.
DELU{4)=0.
DELU(5)=0.
DELU(6)=0.
ELSE

DO 170 KK=1,1I8

DELU(KK) =DUCON{KK, I, J,K)

UNEW(KK,I,J,K)-UOLD (KK,I,J],K)
170 CONTINUE

ENDIF
OLD CONSERIVATIVE VARIABLES UPDATE

DO 175 KK=1,IS
UOLD(KK,I,J,K)=UNEW(KK,I,J,K)
175 CONTINUE
THIS IS THE MAGNITUDE OF THE VELOCITY TO BE USED IN THE
MICROSCOPIC SYSTEM

UE(L,J,K)=(UX(I,J,K)*=x2 +VY(I,J, K) %2 +WZ(I,J K)*x2 )** 5
THESE ARE THE (LD VLAUES OF CONCS’S

CONOLD(1,T,J,K)=CONCS(1)
CONOLD(2,I,J,K)=CONCS(2)

CONOLD (3,I,J,K)=CONCS(3)
CONOLD(4,I,J,K)=CONCS(4)
CONOLD(5,I,J,K)=CONCS(5)
CONOLD(6,I,J,K)=CONCS(6)

IF(ITIME.GE.100000) THEN

THESE ARE THE CONDENSATION WITH AND WITHOUT
NONCONDENSABLES CALLS

FISE(I,J,K)=RHO1(I,J,K)/RHO(I,J,K)
THIS IS FOR SHELL AND TUBE
IF(PORNTS.EQ.1.AND.SHNON.EQ.1) THEN
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CALL NONS(TS,AMDD,PS,TC,HSA,QOA,HEAS,FIS,UE,DX1,PR,
/TE,L,M,N,FISE,HFG,VINF, ALINF ,RINF,RHO1,SENSH,RGAS,I,J,K,HCA)
ELSE
ENDIF
IF(PORNTP.EQ.1.AND.PANON.EQ.1) THEN
CALL NONP(TS,AMDD,PS,TC,HSA,QOA,HEAS,FIS,UE,DX1,PR,
/TE,L,M,N,FISE,HFG,VINF, ALINF ,RINF,RHO1,SENSH,RGAS, T, J,K)
ELSE
ENDIF

ELSE
AMDD(I,J,K)=0.
ENDIF

IF(SHNON.EQ.1.0R.PANON.EQ.1) THEN

1. FOR THE CONTINUITY EQUATION.

CONCS(1)=-SPECSA(I,J,K)*ALINF/ (RINF«VINF)

2. X-MOM. EQUATION.

CONCS (2)=-SPECSA(I,J ,K)*

/AMDD(I,J,K)*UX(I,J,K)*ALINF/ (RINF*VINF)

3. Y-MOM. EQUATION.

CONCS(3)=~SPECSA(I,J,K)=*

/AMDD(I,J,K)*VY(I,J,K)*ALINF/(RINF*VINF)

4, Z-MOM. EQUATION.

CONCS (4)=-8SPECSA(I,J,K)*

/AMDD (I,J,K)*WZ(I,J,K)*=ALINF/ (RINF*VINF)

5. ENERGY EQUATION.

CONCS(5)=-SPECSA(I,J,K)*AMDD(I,J,K) /REO(I,J,K)*GAMx

/(EN(I,J,K)-.5+RHO(I,J,K)=*

/(UX(T,J,K)**2 . +VY(I,J,K)*%2 +WZ(I,J,K)*x2,))«ALINF/(RINF*VINF)
MASS FRACTION EQUATION ,

CONCS (6)=-SPECSA(I,J,K)*ALINF/(RINF*VINF)
WRITE(*,*) CONCS(5),EN(I,J,K)/RHO(I,J,K)*AMDD(I,J,K)
—SPECSA(T, J,K)*QOA(I,J,K)=*

FALINF/(RINF*VINF**3.)

-SPECSA(I, J,K)*SENSH(I,J,K)
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THESE ARE THE NEW VLAUESOF CONCS'S

CONNEW(1,I,J,K)=CONCS(1)

CONNEW(2,I,J,K)=CONCS(2)

CONNEW(3,I,J,K)=CONCS(3)

CONNEW(4,I,J,K)=CONC3(4)

CONNEW(5,I,J,K)=CONCS(5)

CONNEW(6,T,J,K)=CONCS(6)

CONN IS THE JACOBIAN OF THE CONDENSATION TERMS WHIS IS

SOLVED NUMARICALLY

IF(ITIME.GE 3) THEN
CONN(1,1)=(CONNEW(1,I,J,K)-CONOLD(1,T,J,X))
/DUCON(1,I,J.X)
CONN{(1,2)=(CONNEW(1,I,J,K)-CONOLD(1,1,J,K))/DUCON(2,I,],K)
CONN(1,3)=(CONNEW(1,I,J,K)~CONOLD(1,I,J,K))/DUCON(3,I,J,K)
CONN(1,4)=(CONNEW(1,I,J,K)~-CONOLD(1,1,J,K))/DUCON{(4,I,J,K)
CONN(1,5)=(CONNEW(1,I,J,K)-CONOLD(t,1,J,K))/DUCON(5,I,J,K)

CONN(2,1)=(CONNEW(2,I,J,K)-CONOLD(2,I,J,K)) /DUCON(1,I,J,K)

CONN(2,2)=(CONNEW(2,I,J,X)-CONOLD(2,I,J,K))

/DUCON(2,1,J,K)
CONN(2,3)=(CONNEW(2,I,J,K)~-CONOLD(2,I,J,K)) /DUCON(3,I,J,K)
CONN(2,4)=(CONNEW(2,I,J,K)~-CONOLD(2,I,J,K))/DUCON{4,I,J,K)
CONN(2,5)=(CONNEW(2,I,J,K)-CONOLD(2,T,J,K)) /DUCON(5,I,J,K)

CONN(3,1)=(CONNEW(3,I,J,K)-CONOLD(3,1,J,K))
/DUCON(1,1I,J,K)
CONN(3,2)=(CONNEW(3,I,J,K)-CONOLD(3,I,J,K))/DUCON(2,I,],K)
CONN(3,3)=(CONNEW(3,I,J,K)-CONOLD(3,I,J,K))

/DUCON(3,I,J,K)
CONN(3,4)=(CONNEW(3,I,J,K)-CONOLD(3,I,J,K)) /DUCON(4,1,J,K)
CONN(3,5)=(CONNEW(3,I,J,K)-CONOLD(3,1,J,K))/DUCON(5,I,J,K)

CONN(4,1)=(CONNEW(4,I,J,K)-CONOLD(4,I,J,K))/DUCON(1,I,J,K)

CONN(4,2)=(CONNEW(4,I,J,K)-CONOLD(4,I,J,K))/DUCON(2,1,J,K)

CONN(4,3)=(CONNEW(4,I,J,K)-CONOLD(4,I,J,K))/DUCON(3,I,],K)
CONN(4,4)=(CONNEW(4,I,J,K)-CONOLD(4,I,J,K))

/DUCON(4,I,J.K)
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CONN(4,5)=(CONNEW(4,I,J,K)-CONOLD(4,I,J,X))/DUCON(5,I,J, K)

CONN(5,1)=(CONNEW(S,I,J,K)-CONOLD(5,I,J,K))/DUCON(1,I,J,K)

CONN(5,2)=(CONNEW(5,1,3,K)-CONOLD(5,T,J,K))/DUCON(2,I,J,K)}

CONN(5,3)=(CONNEW(5,I,J,K)}~CONOLD(5,I,J,K))/DUCON(3,I,J,K)

CONN(5,4)=(CONNEW(5,I,J,K)-CONOLD(5,T,J,K))/DUCON(4,L,J,K)
CONN(5,5)=(CONNEW(5,I,J,K)-CONOLD(5,1,J,K))

/DUCON(6,1,J,K)

CONN(6,6)=(CONNEW(6,I,J,K)-CONOLD(6,I,J,K))

DO 279 II=1,IS
DO 279 JJ=1,IS
279 WRITE(*,*) CONN(II,JJ),II,JJ

ELSE

ENDIF

ELSE

ENDIF

DEPOSIT PFX,PV1iX,PV2X,PGY,PW1Y,PW2Y,PXDV2, PYDW1,DELU, AND
UCON

DO 178 KK=1,I8

BMAINX (KK, I)=DTSW*(-PFX (KK)+PV1X (KK)+PV2X (KK) +PV3X (KK)
/~PGY (KK) +PW1Y (KK) +PW2Y (KK ) +PW3Y (KK)

/-PHZ (KK) +PE1Z (KK) +PE2Z (KK) +PE3Z (KK) +POURNTP*ERGUN (KX) +
/PORNTS*ERGUNS (KK)+PORNTS*CONCS (KK) )

/+THDSW* (PXDV2 (KK} +PXDV3 (KK)+PYDW1 (KK) +PYDW3 (KK)
/+PZDE1 (KK) +PZDE2 (KK) +PORNTS*CONN (KK ,KK) )
/+SWSW+DELU (KK} -UCON (KX)

178 CONTINUE
NOW START THE LHS OF THE X-SWEEP

ASMI=A SMALL"4%4 MATRIX" MINUS I
ASPL PLUS I

THIS 1S THE IMPLICIT ERGUN TERM
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SOQURC(1,1)=0.
SOURC(1,2)=0.
SOURC(1,3)=0.
SOURC(1,4)=0.
SOURC(1,5)=0.
SOURC(1,6)=0.

SDURC(2,1)=-AVIS*BIJ*RlIJ*UIJ/(RIJ*RIJ*PER)—
/2. #*BIJ*BIJ*CER* (ULJ#*%3, +UIJ*VIJ*VIJ+UL J#WIJ*WII) -
/AVIS*BIJ*R2IJ*UIJ/ (RIJ*RIJ*PER)

SOURC(2,2)=AVIS+BIJ/(RIJ*PER)+BIJ*BIJ*CER* (3. *UTJ*UTJ+VIJ=VIJ+
/WII*WIT)

SOURC(2,3)=BIJ*BIJ*CER* (2. +VIJ*ULJ)
SOURC(2,4)=BIJ*BIJ*CER* (2. *UIJ+WLI)

SOURC(2,5)=0.
SOURC(2,6)=-AVIS*BIJ*R2IJ*ULJ/(RIJ*RI J*PER) -

/2. #*BIJ*BIJ*CER* (UI.J#%3 . +UTJ*VIJ*VIJ+UI J*WI J«WIJ) -
/AVIS*BIJ*R1IJ*UIJ/(RIJ*RIJ*PER)
SOURC(3,1)=-AVIS*BIJ*R1IJ*VIJ/(RIJ*RIJ*PER)-

/2. *BIJ*BIJ*CER* (VIJ*ULJ**2 +VIJk*3, +VIJ*WIJ*WIJ) -
/AVIS*BIJ*R2IJ*VIJ/(RIJ*RIJ*PER)

SOURC(3,2)=BIJ*BIJ*CER* (2. %UIJ*VIJ)

SOURGC(3,3)=AVIS*BIJ/(RIJ*PER)+BIJ*BIJ*CER* (ULJ*UIJ+3.%VIJ*VIJ+
JWIJ*WI)

SOURC(3,4)=BIJ*BIJ*CER#* (2. #VII*WIJ)
SOURC(3,5)=0.

SOURC(3,6)=—-AVIS*BIJ*R2IJ*VIJ/ (RIJ*RIJ*PER)-



/2. *BIJ#BIJI*CER* (VIJ*ULJ%%2 , +VIJk*3 +VIJ*WIJI*WIJ) -
/AVIS*BIJ*R1IJ*VIJ/(RIJ*RIJ*PER)

S0URC(4,1)=-AVIS*BIJ*R1IJ*WIJ/(RIJ*RIJ*PER)-
/2 . *xBIJ*BIJ*CER* (WIJ*UT Iww2  +WIJ*VIJh*2 +WIJkx3, J-
/AVIS*BIJ*R2IJ*WIJ/(RIJ*RIJ*PER)

SOQURC(4,2)=BIJ*BIJ*CER* (2. *ULJ*WIJ)
SOURC(4,3)=BIJ*BIJ*CER* (2.*VIJ+WIJ)

SOURC(4,4)=AVIS*BIJ/ (RIJ*PER)}+BIJ*BIJ*CER* (UTJ*UIJ+VIJ*VIJ+
/3. +WII+WII)

SOURC(4,5)=0.

SOURC(4,6)=-AVIS*BIJ*R2IJ*WIJ/ (RIJ*RIJ*PER)~
/2 *BIJ*BIJ*CER* (WIJ#ULJ*%2 +WIJ*VIJ#%2 . +WIJ*%3, )~
/AVIS*BIJ*R1TI*WIJ/ (RIJ*RIJ*PER)

SQURC(5,1)=0.
SOURC(5,2)=0.
SOURC(5,3)=0.
SOURC(5,4)=0.
SOURC(5,5)=0.
SDURC(5,6)=0.

SOURC(6,1)=0.
SOURC(6,2)=0.
SOURC(6,3)=0.
SOURC(6,4)=0.
SOURC(6,5)=0.
SOURC(6,6)=0,

THIS IS THE SOURCE TERM OF THE SHELL AND TUBE
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SOURCS(1,1)=0.
SOURCS(1,23=0.
SOURCS(1,3)=0.
SOURCS(1,4)=0.
SOURCS(1,5)=0.
SOURCS(1,6)=0.

IF(UIJ.EQ.0.) THEN

SOURCS(2,1)=0.

SOQURCS(2,2)=0.

SOURCS(2,3)=0.

SOURCS(2,4)=0.

SOURCS(2,5)=0.

SOURCS(2,6)=0.

ELSE

SOURCS (2, 1)=-2.*GGX/ (RIJ*%3, ) #*ABSM*x (-BRX) *AMM*TERMP

SOURCS (2,2)=-BRX*GGX/(RIJ#*2, ) *ABSM** (-BRX-1. ) *AMM*TERMP+
JGGX/ (RIJ*%2, ) xABSM** (-BRX ) *TERMP+
/GGX/ (RIJ**2, ) xABSM** (~BRX) *AMM*TERMM*AMM

SOURCS(2,3)=GGK/ (RIJ*%2, ) *ABSM#* (-BRX) *AMM*TERMM*ANN

SOURCS(2,4)=GGX/ (RIJ*x2, ) =ABSM#* (~-BRX) *AMM*TERMM+*AQQ

SOURCS(2,5)=0.

SOURCS (2, 6)=-2. *GGX/ (RIJ**3. ) *ABSM*#* ( -BRX ) *AMM*TERMP
ENDIF

IF(VIJ.EQ.0.) THEN

SOURCS(3,1)=0.
SOURCS(3,2)=0.
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SOURCS(3,3)=0.
SOURCS(3,4)=0.
SQURCS(3,5)=0.
SOURCS(3,6)=0.
ELSE

SOURCS(3, 1)=-2.*GGY/ (RIJ**3. ) *ABSN**(~BRY) *ANN*TERMP

SOURCS(3,2)=GGY/(RIJ**2. ) *ABSN** (-BRY) *ANN*TERMM*AMM

SOURCS (3,3)=-BRY*GGY/(RIJ**2. ) *ABSN** (~-BRY-1. ) *ANN+TERMP+
/GGY/ (RIJ**2, ) *ABSN** (-BRY) *TERMP+
/GGY/(RIJ**2. ) *ABSN*» (-BRY) *ANN+TERMM*ANN

SOURCS(3,4)=GGY/(RIJ**2, ) *ABSN+*+ (-BRY) *ANN+*TERMM*AQQ

SOURCS(3,5)=0.

SOURCS(3,6)=-2. *GGY/ (RIJ#*3. ) * ABSN**(-BRY) *ANN*TERMP

ENDIF

IF(WIJ.EQ.0.) THEN

SOURCS(4,1)=0.

SOURCS (4,2)=0.

SOURCS(4,3)=0.

SOURCS(4,4)=0.

SOURCS(4,5)=0.

SO0URCS(4,6)=0.

ELSE
SOURCS(4,1)=-2.%GGZ/ (RIJ*+3 . ) *ABSQ*#*{~ERZ) *AQQ+*TERMP



SOURCS(4,1)=-2.%GGZ/ (RIJ**3 . )*ABS@*» (-BRZ) *AQQ+*+TERMP
SOURCS(4,2)=GGZ/(RIJ**2, )*ABSQ#*x (-BRZ) *AQQ*TERMM*AMM
SDURCS(4,3)=GGZ/(RIJ*»2 ) «ABSQ*+*(-BRZ)*AQQ+TERMM*ANN

SOURCS(4,4)=-BRZ*GGZ/(RIJ**2.) *ABSQ#* (-BRZ~1. ) *AQQ*TERMP+
/GGZ/(RIJ*»2 ) =ABSQ** (-ERZ)*TERMP+
/GGZ/ (RIJ**2 . )*ABSQ** (-BRZ) *AQQ*TERMM*AQQ

SOURCS(4,5)=0.
SOURCS(4,6)=-2.%GGZ/ (RIJ*+3. ) *ABSQ++{~BRZ) *AQQ+TERMP

ENDIF

SOURCS(5,1)=0.
SOURCS(5,2)=0.
SOURCS(5,3)=0.
SOURCS(5,4)=0.
S0URCS(5,53=0.
SOURCS(5,6)=0.

SOURCS(6,1)=0.
SOURCS(6,2)=0.
SOURCS(6,3)=0.
SOURCS(6,4)=0.
SQURCS(6,5)=0.
SOURCS(6,6)=0.

TSDXM=THSW/DX*XMI/B1J

IF(I.NE.2) THEN

ASMI(1,1)=-TSDXM*R2MI/RMI*UMI

ASMI(1,2)=-TSDXM+R1MI/RMI
*R1MI/RIJ

ASMI(1,3)=0.

ASMI(1,4)=0.
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ASMI(1,5)=0.

ASMI(1,6)=TSDXM*R1MI/RMI+UMI
ASMI(2,1)=TSDXM*((3.-GAM) /2. *UMI*UMI+(1.-GAM) /2. *
/ (UMI*VMI+WMI*WMI))

ASMI(2,2)=TSDAM* ((GAM-3.)*[MI)

ASMI(2,3)=TSDXM= ((GAM-1.)%VMI)

ASMI{(2,4)=TSDXM* (GAM-1.)*WMI
ASMI(2,5)=TSDIM*{(1.~GAM))
ASMI(2,6)=TSDIM*{ (3, -GAM) /2. *UMI+UMI+(1.-GAM)/2.%
/ (VMI*VMI+WMI+WMI})

ASMI(3,1)=TSDXM*(UMI*VMI)
ASMI(3,2)=-TSDXM*VMI
ASMI(3,3)=-TSDXM*UMI
ASMI(3,4)=0.

ASMI(3,58)=0.
ASM;(B,6)=TSDXM*(UHI*VMI)

ASMI{(4,1)=TSDXM+UMI=WMI
ASMI{(4,2)=-TSDXM*WMI
ASMI(4,3)=0,
ASMI(4,4)=-TSDXM*«UMI
ASMI{(4,5)=0,
ASMI(4,6)=TSDXM*UMI*WMI

ASMI(5,1)=TSDXM=* (GAM*EMI*UMI/RMI+ (1.~

/ GAM) *UMI* (UMI*UMI+VMI*VMI+

JWMI*WMI))

ASMI(5,2)=TSDXM#* (~GAM*EMI/RMI+(GAM-1.)/2. % (3. ¥UMI*UMI+VMI*VMI+
/WMI*WMI) )

ASMI(5,3)=TSDIM* ((GAM-1.)+«UMI*VMI)
ASMI(5,4)=TSDXM*(GAM-1.)*UMI*WMI

ASMI(5,5)=-TSDXM# (CAM*UMI)

ASMI(5,6)=TSDXM#* (CAM*EMI*UMI/RMI+{1.-GAM) *UMI* (UMI*UMI+VMI*VMI+
/WMI*WMI))

ASMI(8,1)=TSDXM*R2ZMI/RMI*UMI
ASMI(6,2)=-TSDXM



*R2MI/RMI

o *R2MI/RIJ
ASMI(6,3)=0.
ASMI(6,4)=0,
ASMI(6,5)=0.

ASMI(6,6)=-TSDXM*R1MI/RMI*UMI

ELSE
ENDIF

TSDXP=THSW/DX*XPI/BIJ

NOW DO THE I+1 "ASPI=A SMALL "4+4 MATRIX PLUS I""
IF(I.NE.L~1) THEN

ASPI(1,1)=TSDXP*R2ZPI/RPI+UPL

ASPI(1,2)=TSDXP

*R1PI/RPI

c.

*R1PI/RIJ
ASPI(1,3)=0.
ASPI(1,4}=0.
ASPI(1,5)=0.
ASPI(1,6)=-TSDXP*R1PI/RPI*UPI

ASPI(2,1)=-TSDXP*{(3.-GAM)/2.xUPI*UPI+(1.-GAM)/2. %

/ (VPI=VPI+WPI*WPI))

ASPI(2,2)=-TSDXP*( (GAM-3.)*UPI)

ASPI(2,3)=-TSDXP* ((GAM-1.)*VPI)
ASPI(2,4)=TSDXP*(1.-GAM)*WPI
ASPI(2,5)=-TSDXP*((1.-GAM))
ASPI(2,6)=-TSDXP*((3.~GAM) /2. *UPI*UPI+(1.-GAM)/2.*

/ (VPI=VPI+WPI*WPI))

ASPI(3,1)=-TSDXP*(UPI*VPI)
ASPI(3,2)=TSDXP*(VPI)
ASPI(3,3)=TSDXP*(UPI)
ASPI(3,4)=0.

ASPI(3,6)=0.
ASPI(3,6)=—TSDXP*(UPI*VPI)
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ASPI(4,1)=-TSDXP*UPI*WP1
ASPI(4,2)=TSDXP*WPI
ASPI(4,3)=0.
ASPI(4,4)=TSDXP+UPI
ASPI(4,5)=0.
ASPI(4,6)=-TSDAP*+UPI*WPI

ASPI(5,1)=-TSDXP* (GAM*EPI*UPL/RPI+{1.~GAM) *xUPI*(UPI=UPI
/+VPI*VPI+WPI*WPI))
ASPI(5,2)=-TSDXP*(-GAM*EPI/RPI+(GAM-1.)/2. (3 *»UPI*UPI+VPI*VPI+
/WPI*WPI))

ASPI(5,3)=-TSDXP*({(GAM-1.)*UFPI*VPI)
ASPI(5,4)=TSDXP*(1.-GAM)*UPI*WPI

ASPI(5,5)=TSDXP*GAM*UPI

ASPI(5,6)=~TSDXP* (GAM*EPI*UPI/RPI+{(1.-GAM)*UPI*(UPI*UPI
/+VPI*VPI+WPI*WPI))

ASPI(6,1)=-TSDXP*R2PI/RPI*UPI
ASPI(6,2)=TSDXP

*R2PI/RPI

c

0 aanan

*R2PI/RIJ
ASPI(6,3)=0.
ASPI(6,4)=0.
ASPI(6,5)=0,
ASPI(6,6)=TSDXP*R1PI/RPI*UPI
ELSE
ENDIF
NOW START THE R MATRIX
RSMI= R SMALL MINUS I
RSPI= R SMALL PLUS I
RST= R SMALL AT I
START THE I-1

RLMI=1./(DX1%DX1)*THSW+*BMIH/BIJ
ALIX=1./(DX1%DX1) *THSW*AIM(I, J,K) /AIM(I~1,J,K)*DX1+DX1

ALTHCV=ALV=*1./REINF-PRREM/CVOL
AVTHCV=AVIS*1./REINF-PRREM/CVOL
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IF(I.NE.2) THEN
RSMI(1,1)=-ALIX*EPSIX
RSMI(1,2)=0.
RSMI(1,3)=0.
RSMI(1,4)=0.
RSMI(1,5)=0.
RSMI(1,6)=0.

RSMI(2,1)=RLMI*ALV*UMI/RMI*1./REINF

RSMI(2,2)=-RLMI*(ALV/RMI)*1./REINF-ALIX+EPSI

RSMI(2,2)=~ALIX*EPSIX

RSMI(2,3)=0.

RSMI(2,4)=0.

RSMI(2,5)=0.
RSMI(2,6)=RLMI+ALV+UMI/RMI*1./REINF

RSMI(3,1)=RLMI*AVIS*VMI/RMI%1./REINF
RSMI(3,2)=0.

RSMI(3,3)=-RLMI*(AVIS/RMI)*1./REINF-ALIX*EPSI

RSMI(3,3)=-ALIX*EPSIX

RSMI(3,4)=0.

RSMI(3,5)=0.
RSMI(3,6)=RLMI*AVIS*VMI/RMI*1,/REINF

RSMI{4,1)=RLMI*AVIS*WMI/RMI*1./REINF
RSMI(4,2)=0.

RSMI{4,3)=0.
RSMI(4,4)=-RLMI*AVIS/RMI*1./REINF-ALIX+EPSI
RSMI{(4,4)=-ALIX*EPSIX

RSMI(4,5)=0.
RSMI(4,6)=RLMI*AVIS*WMI/RMI*t./REINF

RSMI(5,1)=RLMI/RMI*(ALTHCV+UMI+UMI+AVTHCV*
(VMI*VMI+WMI*WMI)

/+PRREM/CVOLSEMI/RMI)
RSMI(5,2)=-RLMI/RMI*(ALTHCV*UMI)
RSMI(5,3)=-RLMI/RMI*(AVTHCV*VMI)
RSMI(5,4)=-RLMI*AVTHCV*WMI/EMI
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RSMI(5,5)=-RLMI/RMI*PRREM/CVOL~ALIX*EPSI
RSMI(5,5)=-ALIX*EPSIX
RSMI(5,6)=RLMI/RMI*(ALTHCV*UMI*UMI+
AVTHCV* (VMI*VMT+WMI*WMI)
/+PRREM/CVOL*EMI/RMI)

RSMI(6,1)=0.
RSMI(6,2)=0.
RSMI(8,3)=0.
RSMI(6,4)=0.
RSMI(6,5)=0.
RSMI(6,6)=-ALIX+EPSIX

ELSE
ENDIF

START THE I+1
RLPI=1./(DX1*DX1)*THSW«BPIH/BIJ
RLIPX=1./(DX1#DX1)*«THSW*AIM(I,J,K) /AIM(I+1,J,K)*DX1+DX1

IF(I.NE.L-1) THEN
RSPI(1,1)=-RLIPX*EPSIX
RSPI(1,2)=0.
RSPI(1,3)=0.
RSPI(1,4)=0.
RSPI(1,5)=0.
RSPI(1,6)=0.

RSPI(2, 1}=RLPI/RPI*ALV*UPIx1. /REINF
RSPI(2,2)=-RLPI/RPI*ALV=*1,/REINF-RLIPX+EPSI
RSPI(2,2)=-RLIPX*EPSIX

RSPI(2,3)=0.

RSPI(2,4)=0.

RSPI(2,5)=0.
RSPI(2,6)=RLPI/RPI*ALV*UPIxi./REINF

RSPI(3,1)=RLPI/RPI*AVIS*VPI*1./REINF
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RSPI(3,2)=0.
RSPI(3,3)=-RLPI/RPI*AVIS*1./REINF-RLIPX+EPSI
RSPI(3,3)=-RLIPX+EPSIX

RSPI(3,4)=0.

RSPI(3,5)=0.
RSPI(3,6)=RLPI/RPI*AVIS*VPI*1./REINF

RSPI(4,1)=RLPI*AVIS*WPI/RPI*1./REINF
ASPI(4,2)=0.

RSPI(4,3)=0.
RSPI(4,4)=-RLPI*AVIS/RPI*1./REINF~-RLIPX*EPSI
RSPI(4,4)=-RLIPX+EPSIX

RSPI(4,5)=0.
RSPI(4,6)=RLPI*AVIS*WPI/RPI*1./REINF

RSPI(5,1)=RLPI/RPI*{ALTHCV*UPI+UPI+AVTHCV* (VPI*VPI+WPI*WFI)
/+PREEM/CVOL=EPI/RPI)

RSPI(5,2)=-RLPI/RPI*(ALTHCV*UPI)
RSPI(5,3)=-RLPI/RPI*AVTHCV»VPI
RSPI(5,4)=-RLPI*AVTHCV*WPI/RPI
RSPI(5,5)=-RLPI/RPI*PRREM/CVOL-RLIPX*EPSI
RSPI(5,5)=-RLIPX*EPSIX
RSPI(5,6)=RLPI/RPI*{ALTHCV+UPI*UPI+AVTHCV*(VPI*VPI+WPI*WPI)
/+PRREM/CVOL*EPI/RPI)

RSPI(6,1)=0.
RSPI(6,2)=0.
RSPI(6,3)=0.
RSPI(6,4)=0.
RSPI(6,5)=0.
RSPI(6,6)=-RLIPX*EPSIX

ELSE
ENDIF
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c START THE I INDICES AND ADD THE IDENTITY MATRIX
RLI=(BPIH+BMIH)/(DX1+DX1)*THSW/BIJ

ALXI=2./(DX1%DX1)*THSW#DX1*DX1

C RSI(1,1)=1.0+ALXI+EPSI
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THIS STEP SUBISTITUTES THE RS(I,I) STEPS WHEN
TREATING THE VISCOUS TERMS EXCIPLICITLY

RSI{1,1)=ALXI+EPSIX+1.
RSI(2,2)=1.+ALXI*EPSIX
RSI{(3,3)=1.+ALIX*EPSIX
RS51(4,4)=1.+ALIX*EPSIX
RSI(5,5)=1.+ALIX+*EPSIX
RSI(6,6)=1.+ALIX+#EPSIX

RSI{1,2)=0.
RSI(1,3)=0.
RSI(1,4)=0.
RSI(1,5)=0.
RSI(1,6)=0.

RSI(2,1)=-RLI/RIJ*ALV*UIJ*1./REINF
RSI(2,2)=RLI/RIJ*ALV*1./REINF+1.0+ALXI*EPSI
RSI(2,3)=0.

RSI(2,4)=0.

RSI(2,5)=0.
RSI{2,6)=-RLI/RIJ*ALV*UIJ*1./REINF

RSI(3,1)=-RLI/RIJ*AVIS*VIJ*1./REINF
RSI(3,2)=0.
RSI(3,3)=RLI/RIJ*AVIS*1./REINF+1.0+ALXI*EPSI
RSI(3,4)=0.

RSI(3,5)=0.
RSI(3,6)=~-RLI/RIJ*AVIS*VIJ*1. /REINF

RSI(4,1)=-RLI*AVIS*WIJ/RIJ*1./REINF
RSI(4,2)=0.
RSI(4,3)=0.
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RST(4,4)=RLI*AVIS/RIJ*1./REINF+1.0+ALXI*EPSI
RSI{4,5)=0.
RSI{4,6)=-RLI*AVIS*WIJ/RIJ*1./REINF

RSI(5,1)=-RLI/RIJ* (ALTHCV+UILJ+UIJ+AVTHCV* (VIJ*VIJ+WIJ*WI.J)
/+PRREM/CVOL*EIJ/RIJ)

RSI(5,2)=RLI/RIJ*(ALTHCV*UIJ])
RSI(5,3)=RLI/RIJ*(AVTHCV*VIJ)

RSTI(5,4)=RLI+AVTHCV+#WIJ/RIJ
RSI(5,5)=RLI/RIJ*PRREM/CVOL+1.+ALXI*EPSI
RSI(5,6)=-RLI/RIJ*(ALTHCV+UIJ*UIJ+AVTHCV* (VIJ*VIJ+WIJ*WIJ)
/+PRREM/CVOL*EIJ/RIJ)

RSI(6,1)=0.
RSI(6,2)=0.
RSI(6,3)=0,
RSI(6,4)=0.
RSI(6,5)=0.
RSI(6,6)=1.0+ALXI*EPSI

NOW ADD THE B.C,S TO THE ADJACWNT NODES
AT FIRST DO THE INLET B.C’S AND DEPOSIT THEM AT RSI

ADD THE A(CI, DD

THE FOLLOWING STEPS APPLY ONLY TO SUBSONIC FLOW, WHEN
SUBSONIC

FLOW IS NEEDED THEY SHOULD BE UNCOMMECNTED.

IT HAS TO BE NOTED THAT SUPERSONIC FLOW DOES NOT REQUIRE
THESE STEPS

BECAUSE ALL THE CONSERVITIVE VARIAELES ARE CONSTANT AT
THE INLET

WHICH MAKES THE DELTA OF THE CONSERVITIVE VARIABLES
EQUAL ZERD

go to 3568
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IF(1.EQ.2) THEN

THIS I3 FOR CONSTANT INLET VELOCITY

IF(J.GE.LWALLI) THEN
IF(PRESUR.NE.1.) THEN

RSI(2,1)=RSI(2,1)-(0.5*(GAM-1.)*UX(2,J,K)*%2, )*TSDIM
RSI(2,2)=RST(2,2)+(GAM-1.)*UX(2,J,K)}*TSDXM
RSI(2,5)=RSI(2,5)-(GAM-1.)*TSDIM
RSI(2,6)=RSI(2,6)~(0.5+x(GAM-1.)*UX(2,J,K)**2, ) *TSDXM

RSI(5,1)=RSI(5,1)-(0.5*GAM*UX(1,J,K)*UX(2,J,K)*%2,)*TSDXM
RSI(5,2)=RSI(5,2)+GAM*UX{1,J,K)*UX(2,J,K)*TSDXM
RSI(5,5)=RSI(S,5)~GAM*UX(1,J,K)*TSDXM
RSI(5,6)=RSI(5,6)-(0.5*GAM*UX(1,J,K)*UX(2,J,K)**2, )*TSDXM

ADD THE R1(I,D)

RSI(5,1)=RSI(5,1)-(0.5*PRREM/(RHO(1,J,K)*CVOL)*UX(2,J K} %%2 }*
/RLMI

RSI(5,2)=RSI(5,2)+PRREM/(RHO(1,J,K)}*CVOL)*

/UX(2,J,K)*RLMI

RSI(5,5)=RSI(5,5)-PRREM/ (RHO(1,J,K)=CVOL)*RLMI
RSI(5,6)=RSI(5,6)-(0.5*PRREM/(RHO(1,J,K)*CVOL)*UX(2,J,K)**2, )%
/RLMI

THIE INLET B.C’S OF THE DISSIPATION TERM

RSI(5,1)=RSI(5,1)-0.5+«EPSI*(UX(2,J,K)**2.+VY(2,J,K)**2, +
IWZ(2,J,K)**2. )*ALT

RSI(5,2)=RSI(5,2)+EPSI*UX(2,J,K)*ALI
RSI(5,3)=RSI(5,3)+EPSI+VY(2,J,K)*ALI
RSI(5,4)=RSI(5,4)+EPSI*WZ(2,J,K)*ALI
RSI(5,5)=RSI{(5,5)-EPSI+ALI
RSI(5,6)=RSI(5,6)-0.5+«EPSI*(UX(2,J K)++2.+VY(2,J,K)**2 +
/WZ(2,J,K)**2. }*ALI
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ELSE
THIS IS FOR CONSTANT PRESSURE AT THE INLET

RSI(1,1)=RSI(1,1)+RHO(1,J,K)/RHO(2,J,K)*UX(2,J,K)*TSDXM=*
/RHD1(1,J,K)/RHO(1,.J,K)

RSI(1,2)=RSI(1,2)-RHO(t,J,K) /RHO(2,J,K)*TSDXM
RSI(1,6)=RSI(1,6)+RHO(1,J,K)/RHD(2,J,K)*UX(2,J,K)+TSDXM*
/RHD2(1,J,K)/RHO(1,J,K)

RSI(2,1)=RSI(2,1)+(RHO(L,J,X)/RHO(2,J,K)*UX{(2,],K)+UX(2,],K)«
/(3. -GAM) +
/RHO(1,J,X) /RHO(2,J,K)*UX(2,J,K)*UX(2,J,K)*(GAM-1.))*TSDXM

RSI(2,2)=RSI(2,2)-(RHO(1,J,K)/RHO(2,J,K)*(3.-GAM)*UX(2,J,K)+
/RHO(1,J,K) /RHO(2,J,K)*UX(2,J,K)*+ (GAM-1.) ) *TSDXM

RSI(2,6)=RSI(2,6)+(RHO(L,J,K)/RHD(2,],K)*UX(2,J,K)+UX(2,],K) *
/(3.-GAM) +
/RHO{1,J,K) /RHO(2,J,K)*UX(2,J K} *=UX(2,J,K)*(GAM-1.))*TSDIM

RSI(5,1)=RSI(5,1)+{RHO(1,J,K)/RHO(2,J,K}*UX(2,J,K)*(GAM*EN(1,J,K)/
JRHO(L,J,K)+3.+(1 . -GAM) /2. +UX (2, J,K)*UX{2,1,K) }+
JGAM*RHO(1,],K)/RHO(2,J,K)*UX(2,J,K)*%3. ) *TSDXM

RSI(5,2)=RSI(5,2)-(RHO(1,J,K)/RHO(2,J,K)*{GAM+EN(1,J,K)/
JRHOCL,J,K)+3. (1. -GAM) /2. »UX(2,],K)«UX(2,J,K))+
JGAM*RHO(L,J,K)/RHO(2,J,K)*UX (2, T ,K) **2 . }»TSDIM

RSI(5,6)=RSI(5,6)+(RH0(1,J,K)/RHO(2,J,K)*UX{(2,J,K)*(GAM+*EN(1,J,K)/
/JRHO(1,J,K)+3.#(1.-GAM) /2. +UX (2, J,K) *UX(2,J,K) )+

/GAM*RHO(1, J,K) /RHO(2, J,K)*UX (2, J,K) #*3, ) *TSDIM

ADD THE R1(I,J) '

RSI(2,1)=RSI(2,1)+UX(2,J,K)/RHO(2,J,K)*BETA(1,J,K)*ALV*RLMI*
/1./REINF

RSI(2,2)=RSI(2,2)~BETA(1,J,K)/RHO(2,J,K)*
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/ALV*RLMI*1. /REINF

RSI(2,6)=RSI(2,6)+UX(2,J,K)/RHO(2,J,K)*BETA(1,J,K)*ALV*RLMI*
/1./REINF

RSI(5,1)=RSI(5,1)+(UX(2,J,K)*UX(2,J,K)/RHO(2,J,K)*BETA(1,J,K)*
/ALTHCV+UX (2,J,K)=UX(2,J,K)/
/RHO(2,J,K)*BETA(1, J,K)*PRREM/CVOL) *RLMI

RSI(5,2)=R3I(5,2)-(UX(2,J,K)/RHO(2,J,K)*BETA(1,J,K)*
/ALTHCV+UX(2,J,K)/
/RHD(2,J,K)*BETA(1, J,K) *PRREM/CVOL) *RLMI

RSI(5,6)=RSI(5,6}+(UX(2,J,K)*UX(2,J,K)/RHO(2,J,K)*BETA(1,J,K)*
/ALTHCV+UX (2, J,K)*UX(2,J,K)/
/RHO(2,J,K)*BETA(L, J,K)*PRREM/CVOL) *RLMI

ENDIF

START THE WALL B.C’S FOR THE

ELSE

RSI(2,5)=RSI(2,5)-(GAM~1.)*TSDXM
RSI(5,1)=RSI(5,1)+(PRREM/CVOL*EN(2,J K)/RHO(2,J,K)**2.)*
/RLMI

RSI(5,5)=RSI(5,5)-(PRREM/CVOL*1./RHO(2,J,K))*RLMI
RSI(5,6)=RSI(5,6)+(PRREM/CVOL*EN(2,J,K)/RHO(2,J,K)*=*2 )=
/RLMI

ENDIF

ELSE
ENDIF

OUTLET B.C,5
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IF(I .EQ.L-1) THEN

THE FOLLOWING COMMENTED LINES ARE FOR CONSTANT OUTLET
PRESSURE

WHICH IS THE CASE FOR SUBSONIC FLOW

THIS IF IS FOR THE NON-SLIP OUTLET B.C’S

IF(J.LT.LWALLO) THEN
C1=0.5%{(UX(L~1,J,K) %2 +VY(L-1,J,K)**2 +WZ(L-1,J,K)*=%2.)

RSI(1,2)=RSI(1,2)+TSDXP*RHO1(L,J,K)/REO(L,J,K)
RSI{(2,5)=RSI(1,8)+TSDXP*RHO2(L,J,K)/RHO(L,J,K)

RSI(2,1)=RSI(2,1)+((GAM-3.)/2. *UX(L,J,K)»*2 +(GAM-1.)/2.%
/UYL, J,K)**2, +WZ(L,J,K) *+2.) )*TSDXP
/= (GAM-1. ) *C1*TSDXP

RSI(2,2)=RSI(2,2)+((3.-GAM)*UX(L,J, K))*TSDXP
/+(CGAM-1.)=UX{L, J ,K)*TSDXP

RSI(2,3)Y=RSI(2,3)+({1.-GAM)*VY(L,J,K))*TSDXP
/+(GAM-1.)%VY(L,J,K)*TSDEP

RSI(2,4)=RSI(2,4)+{(1.~GAM)*WZ(L,J, K))*TSDXP
/+(GAM-1.)*WZ(L,J,K)*TSDXP

RSI(2,8)=RSI(2,6)+((CAM-3.)/2.%UX(L,J, K)**2 +{GAM-1.)/2.%
JOVY (L, J,K) %2 +WZ(L,J,K)*+2,))+TSDXP
/- (CAM-1.)*C1+TSDXP

RSI(3,1)=RSI(3,1)-UX(L,J,K)*VY(L,J,K)*TSDXP

RSI(3,2)=RSI(3,2)+VY(L,J,K)*TSDXP
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RSI(3,3)=RSI(3,3)+UX(L,J,K)*TSDXP

RSI{3,6)=RSI(3,6)-UX(L,J,K)*VY(L,J,K)*TSDXP

RSI(4,1)=RSI(4,1)-UX(L,J,K)*WZ(L, J,K)}*TSDXP
RSI(4,2)=RSI{4,2)+WZ(L,J,K)*TSDXP
RSI(4,4)=RSI{4,4)+UX(L,J,K)*TSDXP

RSI(4,6)=RSI(4,6)-UX(L,J,K)*WZ(L,J,K)*TSDXP

RSI(5,1)=RSI(5,1)-(GAM*EN(L,J,K)*UX{L,J,K)/RHO(L,J,K)
/+(1. -GAM) #UX(L,J,K)* (UX(L,J,K)*%2. +VY(L,J,K)*%2 +
JWZ(L,J,K)Y**2, ))#TSDIP
/- (GAM*UX(L,J,K)*C1) *TSDXP

RSI(5,2)=R3I(5,2)+(GAM*EN(L,J,K)/RHO(L,J,K)+(1.-GAM) /2 *
S (B3 AUX(L, J,E) #%2. +VY (L, J,K) %2 +WZ(L,J ,K)»==2 }}*TSDXP
/+GAM*UX (L, J,K)*UX (L, J,K) *TSDXP

RSI(5,3)=RSI(5,3)+((1.~-GAM)*UX(L,J,K)*VY(L,J,K))*TSDXP
/+GAM*UX(L, J,K)*VY(L, J,K) *TSDXP

RSI(5,4)=RSI(5,4)+(1.-GAM)*UX(L,J,K)*WZ(L,J,K)*TSDXP
/+GAM*UX (L, J,K)}*WZ(L, J,K) *TSDXP

RSI(5,6)=RSI(5,6)-(GAM*EN{L,J,K)*UX(L,.J,K)/RHO(L,J,K)
/+(1.-GAM)=UX(L,J,K) = (UX(L,J,K)**2 +VY(L,J ,K)==2 +
/WZ(L,J,K)**2,))*TSDXP
/-(GAM*UX (L, J,K)*C1) *TSDXP

C NOW ADD R1{L,J}
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RSI(2,1)=RSI(2,1)+ALV*{UX(L,J,K)/RHO(L,J,K))*
/RLPI*1./REINF
RSI(2,2)=RSI(2,2)-ALV/RHO(L,J,K)*RLPI*1./REINF
RSI(2,6)=RSI(2,6)+ALV*(UX(L,J,K)/RHO(L,J,K)}*
/RLPI*1./REINF
RSTI(3,1)=RSI{(3,1)+AVIS*VY(L,J,K)/RHOCL,J,K)*
/RLPI*1./REINF
RSI(3,3)=RSI(3,3)-AVIS/RHO(L,J,K)*RLPI*1./REINF

RSI(3,6)=RSI(3,6)+AVIS*VY(L,J,K)/RHO(L,J,K)=*
/RLPI*1./REINF

R3SI(4,1)=RSI{4,1)+AVIS*WZ(L,J,K)/RHO(L,J,K)*RLPI*1./REINF
RSI(4,4)=RSI(4,4)-AVIS/RHO(L,J,K)*RLPI*1./REINF
RSI(4,6)=RSI{4,6)+AVIS*WZ(L,J,K)/RHO(L,J,K)*RLPI*1, /REINF-
RSI(5,1)=RSI(E,1)+1./RHO(L,J,K) = (ALTHCV+UX{L, J,K) **2.
/+AVTHCY=(VY{L,J,K)»+2 +WZ(L,J,K)*%2 )*BPIH/BIJ
/+PRREM/CVOL*EN(L,J ,K) /RHO(L,J,K))*RLPI

/+(PRREM/ (RHO(L, J,K)*CVOL)*C1)*RLPI

RSI(5,2)=RSI(5,2)-1./RHO(L,J,K)*{ALTECV*UX(L,J,K))*RLPI
/-PRREM/ (RHO(L,J,K)»CVOL) *UX (L, J,K) *RLPI

RSI(5,3)=RSI(5,3)-1./RHO(L,J,K)*=(AVTHCV*VY(L,J,K))*RLPI
/~PRREM/ (CVOL*RHO(L, J,K))*VY(L,J,K)*=RLPI
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RSI(5,4)=RSI(5,4)~1./RHO(L,J,K)*(AVTHCV*WZ(L,J,K))*RLPI
/-PRREM/ (RHO(L,J ,K)*CVOL) »WZ (L ,J,K) *RLPI

RSI(5,6)=RSI(5,6)+1./RHO(L,J,K)*(ALTHCV4UX(L,J K} **x2,
/+AVTHCV* (VY (L, J,K) **2 +WZ (L, J,K)*%2,) *BPTH/BLJ
/+PRREM/CVOL*EN(L, J,K) /RHO(L, J,K) ) *RLPI
/+(PRREM/ (RHO(L, J,K)*CVOL)*C1) *RLPI

c THE IMPLICIT DISSIPATION TERM B.C’S

RSI(1,1)=RSI(1,1)-EPSI+ALI
RSI(2,2)=RSI(2,2)-EPSI*ALI
RSI(3,3)=RSI(3,3)-EPSI*ALI
RST{4,4)=RSI(4,4)-EPSI*ALI

RSI(5,1)=RSI{5,1)+C1*EPSI*ALT
RSI(5,2)=RSI(5,2)-EPSI*UX(L-1,J,J)*ALI
RSI(5,3)=RSI(5,3)-EPSI*VY(L-1,J,K)*ALI
RSI(5,4)=RSI(5,4)-EPSI*WZ(L-1,J,K)*ALI
RSI(6,6)=RSI(6,6)-EPSI*ALI

c THIS ELSE IS FOR THE NON-SLIP OUTLET B.C,S
ELSE

RSI(2,5)=RSI(2,5)+(GAM~-1.)*TSDXP
RSI(5,1)=RSI(5,1)+PRREM/CVOL*EN(L~1,J,K)/(RHO(L~1,J,K)%*2 )%
/RLPI

RSI(5,5)=RSI(5,5)-PRREM/CVOL*1, /RHO(L-1,J,K)*RLPI
RSI(5,6)=RSI(5,6)+PRREM/CVOL*EN(L~1,J,K)/(REO(L-1,J,K}+%2 }*
/RLPI

ENDIF

ELSE
ENDIF
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180

150

ADD SIMILAR INDICES TOGETHER TO FORM THE SUBMATRICES
OF THE MAIN MATRIX

DO 180 KK=1,IS

DO 180 LL=1,IS

IF(I.NE.2) THEN
ATMI(KK,LL,I)=ASMI(KK,LL)+RSMI(KK,LL)

ELSE

ATMI(XK,LL,I)=0.

ENDIF

IF(I.NE.L-1) THEN
ATPI(KX,LL,I)=ASPI(KK,LL)+RSPI(KK,LL)

ELSE
ATPI(KK,LL,I)=0.
ENDIF

ATI(KK,LL,I)=RSI(KK,LL)+PORNTP*THSW*SOURC (KK,LL)+
/PORNTS+THSW+S0URCS (KX, LL)

CONTINUE

NOW CLOSE THE X-SWEEP DO-LOOPS "THE Y AND X“

CONTINUE

THOSE IFS IS TO FIND IL AND IUX( THE LOWER AND UPPER VALUES

OF IWHICH MATRICES ARE DEFIND).

IF(NY2.GE.NY3) THEN
IF(J.GT.1.AND.J.LT .NY3) THEN
IL=LX2+1

TUX=LX4-1

ELSE
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ENDIF

IF(J.GE.NY3.AND.J.LE.NY2) THEN
IL=LX2+1

IUX=LX3-~1

ELSE

ENDIF

IF(J.GT.NY2.AND.J.LT.NY4) THEN
IL=LX1+1

TUX=LX3-1

ELSE

ENDIF

ELSE

TF{J.GT.1.AND.J.LE.NY2) THEN
IL=LX2+1

IUX=1.X4-1

ELSE

ENDIF

IF(J.GT.NY2.AND.J.LT.NY3) THEN
IL=LX1+1

IUX=LX4-1

ELSE

ENDIF

IF(J.GE.NY3.AND.J.LT.NY4) THEN
IL=LXi+1

IUX=LX3-1

ELSE

ENDIF

ENDIF

CALL NBTRIP(ATMI,ATI,ATPI,BMAINX,IL,IUX,IS)
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NOW DEPOSIT BMAINX INTQ DUCON

THE DUCON WILL HAVE ALL THE CONSERVITIVE VARIABLES AT ALL
LOCATTONS

AT EVERY TIME STEP

¢ IS IR SIS

DO 185 I=2,L-1
DO 185 KK=1,IS
DUCON(KK,I,J,K)=BMAINX(XX,I)
c WRITE(%,%) BMAINX(KK,I) ,KK,I,J
185 CONTINUE

140 CONTINUE

Q

CALL SOLVE SUBROUTINE SOLVE TO FIND THE UNKOWNS WHICH
ARE DEPOSITED
C AT BMAINX

lo]

C
c START THE Y-SWEEP
DO 200 K=2,N-1
c THIS IS THE X-DO-LOOP FOR THE Y-SWEEP

b0 200 I=2,L-1

C UPDATE THE Y-DISSIPATVE TERMS

DD 205 J=1,M
UCONY(1,J)=RHO1(I,J,K)+DUCON(1,I,J,K)/AIM(L,J,K)

UCONY (2, J)=RHO(I,J,K)*UX(I,J,K)+DUCON(2,1,J,K)/AIM(1,],K)
UCONY (3, J)=RHO(I, J,K)*=VY(I,J,K)+DUCON(3,I,J,K)/AIM(I,J,K)
UCONY (4, J}=RHO(I, J,K)*=WZ(I,J,K)+DUCON(4,I,J,K)}/AIM(I,J,K)
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UCONY (5, J)=EN(I,J,K)+DUCON(5,T,3,K)/AIM(I, ], XD
UCONY(6,J)=RHO2(I,J,K}+DUCON(6,L,J ,K)/AIM(I, ] K)
205 CONTINUE

C START THE Y-LOOP OF THE Y-SWEEP

DO 210 J=2,M-1

Q

THIS IS THE SUTHERLANS VISCOSITY.

C VISCOSITY OF STEAM

CST=861.1

TSR=416.1

AVSR=.1706E-6

AVS=AVSR* ((TSR+CST)/(TE(I,J,K)+CST))*(TE(I,J,K)/TSR)**1.5

C VISCDOSITY FOR AIR
CGT=110.6
TGR=273.1
AVGR=.1716E-6
AVG=AVGR* ( (TGR+CGT) /(TE(I,J,K)+CGT) )*(TE(I,J,K) /TGR) **1.5

c MIXTURE VISCOSITY

AVSGU=(1.+
(C(AVS/AVR) %+, B5) % (AMOG/AMOS) #* . 25) %%2,

AVSGD=SQRT (8. )* (1. +AMDS/AMOG) ** .5

PHISG=AVSCU/AVSGD

AMOS=18.
C ASSUMING OXYGAN ONLY.

AMOG=29.

AVGSU=(1.+
((AVR/AVS) %% . 5) * (AMOS/AMOG) %, 25) %2,



c

AVGSD=SQRT (8.)*(1.+AMDG/AMOS) ** 5
PHIGS=AVGSU/AVGSD

SFRAC=RHO1(I,J,K)/(RHO1(I,J,K)+RH0O2(I,J,K))
GFRAC=RH02(I,J,K)/(RHOL1(I,J,K)+RHO2(T,J,K))
AVIS=(SFRAC*AVS)/ (SFRAC+PHISG*GFRAC)+

/ (GFRAC*AVG) / (GFRAC+PHIGS*SFRAC)

THK IS NOT NEEDED IN THIS PROGRAM BECAUSE IT IS INCLUDED IN
THE PRNUM

THK=CP*AVIS/0.72

ALAM=~2./3.*AVIS

COURNT=1.

THIS IS THE FOURTH ORDER DISSTPATION TERM

IF(J.EQ.é) THEN

UCO1M1=UCONY(1,J)
UCO2M1=-UCONY (2, J)
UCO3M1=-UCONY (3, )
UC04M1=-UCONY(4,J)
UCOSM1=UCONY (5, J)
UCO6M1=UCONY (6, J)

UCON(1)=AJM(I, J,K) *EPSY*COURNT*(UCONY (1, J+2) -
/4. *UCONY (1,J+1)+6. *UCONY(1,J)-
/4. *«UCONY{1,J~-1)+UCO1M1)

UCON(2)=AIM(T,J,K) *EPSY*COURNT* (UCONY(2, J+2) -
/4. *¥UCONY (2, J+1)+6 . «UCONY (2, 1) -
/4. *UCONY (2, J-1) +UCD2M1)
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UCON (3)=AJIM(I,J,K)*EPSY+COURNT* (UCONY (3, J+2) -
/4. *UCONY (3, J+1)+6 . #UCONY (3, J)~
/4. *UCONY (3, J-1)+UC0O3M1)

UCON(4)=AJM(I,J,K)*=EPSY*COURNT*(UCONY (4, J+2) -
/4. *UCONY (4, J+1)+6 . *UCONY(4,])-
/4. «UCONY (4, J-1)+UCD4M1)

UCON (5)=AJM(I, J,K) *EPSY#COURNT* (UCONY (5, J+2) -
/4. *UCONY (5, J+1)+6 . *UCONY (5, J) -
/4. *UCONY (5, J-1)+UCO5M1)

UCOR{6)=AJM(I,J,K) *EPSY*COURNT* (UCONY (6, J+2) -
/4. *UCONY (6, J+1)+6 . xUCONY(6,J}-
/4. *UCONY (6, J-1)+UCO6EM1)

ELSEIF(J.EG. (NY4-1)) THEN

UCO1P1=UCONY ({1, ])
UC02P1=-UCONY(2,J)
UCD3P1=-UCONY (3, 1)
UC04P1=-UCONY (4, 1)
UCO5P1=UCONY (5, )
UCD6P1=UCONY(6,])

UCON(1)=AJM(I,J,K)*EPSY*COQURNT* (UCO1P1-
/4 *UCONY(1,J+1)+6 . «UCONY(1, J)-



/4. *UCONY (1, J-1)+UCONY (1, J-2))

UCON(2)=AJIM(I,J,K)*EPSY*COURNT*{UCD2P1-
/4. *UCONY(2,J+1)+6, *UCONY(2,J) -
/4 . «UCONY {2, J-1)+UCONY (2, J-2))

UCON(3)=AJM(I,J,K)*EPSY*CQURNT* (UC0O3P1~
/4 . «UCONY (3, J+1)+6. «UCONY(3,J) -
/4. +UCONY (3, J-1)+UCONY(3,J-2))

UCON(4)=AJM(I,],K)+EPSY+COURNT* (UCD4P1-
/4. *UCONY (4, J+1)+6. *UCONY(4,J) -
/4. «UCONY (4, J-1)+UCONY (4, J-2))

UCON (6)=AJM(I,J,K)=EPSY=COURNT* (UCO5P1-
/4. *UCONY (5, J+1)+6. *UCONY (5, I) -
/4. *UCONY (5, J-1)+UCONY(5,J-2))

UCON{6)=AJM(I,J,K)*EPSY*COURNT* (UCO6P1—
/4. *UCONY (6, J+1)+6 . xUCONY (6, J) -
/4, *UCONY (6, J-1)+UCONY(6,J-2))

ELSE

DO 2081 KK=1,IS
UCON (KK)=AJM(I,J,K)*EPSY*COURNT* (UCONY (KK, J+2) -
/4. *UCONY (KK, J+1)+6 . *UCONY (KK, J) -
/4. +UCONY (KK, J-1)+
/UCONY (KK, J-23)
2081 CONTINUE
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THIS IS THE ASMI IS USED INSTEAD OF USING BSMI TO MINIMIZE THE

THE STORAGE REQUIRED BY THIS PROGRAM

DEFINE THE PREMITIVE VARIABLES AS FOLLOWS

RIJ=RHO(I,J.K)
R1IJ=RHO1(I,J,K)
R2IJ=RHOZ(I,J,K)
UIJ=UX(I,J,K)
VIJ=VY(I,J,X)
WIJ=WZ(I,J,K)
EIJ=EN(I,J,K)
PIJ=PR(I,J,K)
TIJ=TE(I,J,K)

BIJ=BETA(I,J,K)

RPJ=RHD(I, J+1,K)
RMJ=RHO(I,J~-1,K)

R1PJ=RHO1(I,J+1,K)
R1MJ=RHO1(I,J-1,K)



R2ZPJ=RHD2(I, J+1,K)
R2MJ=RHO2({I,J-1,K)

UPJ=UX(I,J+1,K)
UMJI=UX(I,J-1,K)
VPJ=VY(I, J+1,K)
VMI=VY(I,J-1,K)
WPJI=WZ(I,J+1,K)
WMJI=WZ(I,J-1,K)
EPJ=EN(I,J+1,K)
EMJ=EN(I,J-1,K)
PPJ=PR(I, J+1,K)
PMJ=PR(I,J-1,K)
TPJ=TE(I, J+1,K)
TMJ=TE(I,J-1,K)

BPJ=BETA(I,J+1,K)
BMJ=BETA(I,J-1,K)
BPJH=(BPJ+BIJ)/2.
BMJH=(BIJ+BMJ) /2.

YPJI=YY(I,J+1,K)*AIM(I,J+1 ,K)+BETA(I,J+1,K)
YMJI=YY(I,J-1,K)*AJM(I,J-1,K)*BETA(I,J-1,K)

ALTHCV=ALV=*1./REINF-PRREM/CVOL
AVTHCV=AVIS*1. /REINF-PRREM/CVOL

IF(J.EQ.2) THEN
DO 333 II-=1,IS
Do 333 JJ=1,I8

ASMI(II,JJ)=0.
RSMI(II,JJ)=0.
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333 CONTINUE
ELSE
ENDIF

IF(J.EQ.M-1) THEN
DO 444 II=1,1IS
DO 444 JJ=1,IS

ASPI(II,JJ)=0.
RSPI(II,JJ)=0.

444 CONTINUE
ELSE
ENDIF

TSDYM=THSW/DY*YMJ/BIJ

IF(J.NE.2) THEN
ASMI(1,1)=-TSDYM*R2MJ/RMJI*VMJ
ASMI(1,2)=0.
ASMI(1,3)=-TSDYM*R1MJ/RMJ

ASMI(1,4)=0.
ASMI(1,8)=0.
ASMI(1,8)=TSDYM*R1MJ/REMJ*VM]

ASMI(2,1)=UMJ*VMJI*TSDYM
ASMI (2,2)=-VMJI*TSDYM
ASMI(2,3)=-UMJ*TSDYM
ASMI(2,4)=0.
ASMI(2,5)=0.
ASMI(2,6)=UMJI*VMI*TSDYM

ASMI(3,1)=((3.-GAM) /2. *VMJI*VMJ+ (1, ~GAM) /2. » (UMI*UMJI+WMI*WMT) ) *
/TSDYM

ASMI(3,2)=(GAM-1.)=UMI*TSDYM

ASMI(3,3)=(GAM-3.)+VMI+TSDYM

ASMI(3,4)=(GAM-1.)*WMJI*TSDYM
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ASMI(3,5)=(1,-CAM)=*TSDYM
ASMI(3,6)=((3.-GAM) /2. *VMI*VMI+(1.-CGAM) /2. % (UMI*UMI+WMI*WMI) )%
/TSDYM

ASMI(4,1)=UMJ*WMI*TSDYM
ASMI(4,2)=0.
ASMI(4,3)=-WMJ*TSDYM
ASMI(4,4)=-VMI*TSDYM
ASMI(4,5)=0.

ASMI (4,6)=VMJ*WMJ*TSDYM

ASMI(5,1)=(GAMAEMJI*VMI/RMJI+{1.-GAM) *VMJ=*
/ (UMJ*UMI+VMI*VMI+WMI*WM.I) ) *TSDYM
ASMI(5,2)=(GAM-1.) *UMJI*VMI*TSDYM
ASMI(5,3)=(-GAM*EMJ/RMJ+(GAM-1.)/2.%
/(3. = VMI*VMI+UMI*UMI+WMJI*WMJI) ) *TSDYM
ASMI(5,4)=(GAM~1.) «*VMI*WMJI*TSDYM
ASMI(5,5)=-GAM*VMJI*TSDYM

ASMI (5, 6)=(GAM*EMJI*VMI/RMJI+ (1. -CAM) »VMJI*
/ (UMJ*UMI+VMJI*VMJI+WMJI*WM.J) ) «TSDYM

ASMI(6,1)=TSDYM*R2MJ/RMJ*VMJ
ASMI(6,2)=0.
ASMI(6,3)=-TSDYM*R2MJ/RMJ

ASMI(6,4)=0.
ASMI(6,5)=0.
ASMI(6,6)=-TSDYM*R1MJ/RMI*VMJ

ELSE
ENDIF
THIS IS THE I+1

TSDYP=THSW/DY*YPJ/BIJ
IF(J.NE.M-1) THEN
ASPI(1,1)=TSDYP*R2ZPJ/RPJ*VPJ
ASPI(1,2)=0.
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ASPI(1,3)=TSDYP*R1PJ/RPJ
*R1PJ/RPJ

ASPI(1,4)=0,

ASPI(1,5)=0.

ASPI(1,6)=-TSDYP*R1PJ/RPJI#VP]

ASPI(2,1)=-UPJ*VPJ*TSDYP
ASPI(2,2)=VPI*TSDYP
ASPI(2,3)=UPJ*TSDYP
ASPI(2,4)=0.
ASPI(2,5)=0.
ASPI(2,6)=-UPJ*VPJ*TSDYP

ASPI(3,1)=—((3.-GAM) /2. *VPJ*VPJ+(1.-GAM) /2.*
/ (UPJ*UPJ+WPJ*WPJ) ) *«TSDYP
ASPI(3,2)=-(GAM-1.)*UPJ*TSDYP
ASPI(3,3)=-(GAM-3.)*VPJ*TSDYP
ASPI(3,4)=(1.-GAM)*WPJ*TSDYP
ASPI(3,5)=(GAM-1.)*TSDYP
ASPI(3,6)=-{(3.-GAM) /2. *VPJxVPJ+(1.-GAM) /2. *
/ (UPJ*UPJ+WPJI*WPJ) ) *TSDYP

ASPI(4,1)=-VPJ*WPJ*TSDYP
ASPI(4,2)=0,
ASPI(4,3)=WPI*TSDYP
ASPI(4,4)=VPJ*TSDYP
ASPI(4,5)=0.

ASPI (4,8)=-VPJI+*WPJ*TSDYP

ASPI(5,1)=—(GAM*EPJ*VPJ/RPJ+(1.-GAM)*VPJ*

/ (UPJ*UPJ+VPJ#VPJ+WP J*WPJ) ) *TSDYP
ASPI(5,2)=-(GAM~-1.)*xUPJ*VPJ*TSDYP
ASPI(5,3)=(GAM*EPJ/RPJ-(GAM-1.)/2.%

/ (3. «VPI*VP J+UPJ*UPJ+WP J*WPJ) ) *TSDYP
ASPI(5,4)=(1.-GAM)*VPJ*WPJ*TSDYF
ASPI(5,5)=GAM*VPJ*TSDYP
ASPI(5,6)=—(CAM*#EPJ*VPJ/RPJ+(1.-GAM)*VPJ*

/ (UPJ*UPJ+VPJ*VPJ+WPI*WP.]) ) #TSDYP
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ASPI(6,1)=-TSDYP*R2PJ/RPI*VPJ

ASPI(6,2)=0.

ASPI(6,3)=TSDYP+R2PJ/RPJ
*R2P.J/RPJ

ASPI(6,4)=0,

ASPI(6,5)=0.

ASPI(6,6)=TSDYP*RiPJ/RPJ*VPJ

ELSE
ENDIF

DO THE RSMI "I-1"

AL1Y=1./(DY1+DY1)*THSW*BMJH/BIJ

ALI=1./(DY1+DY1)+*THSW*AJIM(I, J,K) /AIM(I,J-1,X)

IF(J.NE.2) THEN

THIS IS FOR THE EXCIPLICIT VISCOUS TERMS ONLY

RSMI{1,1)=-ALI*EPSIY
RSMI(2,2)=-ALI*EPSIY
RSMI(3,3)=-ALI*EPSIY
RSMI(4,4)=-ALI*EPSIY
RSMI(5,5)=—ALI*EPSIY
RSMI(6,6)=—ALI*EPSIY
RSMI(1,1)=0.-ALI+EPSI
RSMI(1,2)=0.
RSMI(1,3)=0.
RSMI(1,4)=0.
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RSMI{1,5)=0.
RSMI(1,6)=0.

RSMI(2,1)=AVIS*UMI/RMJ*AL1Y*1./REINF
RSMI{(2,2)=-AVIS/RMJI*AL1Y*1./REINF-ALI*EPSI
RSMI(2,3)=0.

RSMI(2,4)=0.

RSMI(2,5)=0.
RSMI(2,6)=AVIS*UMJ/RMJ*AL1Y*1. /REINF

RSMI(3,1)=ALV*VMJ/RMJI*AL1Y+*1. /REINF
RSMI(3,2)=0.

RSMI{3,3)=-ALV/RMJ*AL1Y*1, /REINF-ALI*EPSI
RSMI(3,4)=0.

RSMI(3,5)=0.
RSMI(3,6)=ALV*VMJI/RMI*AL1Y+1./REINF

RSMI(4,1)=AVIS*WMJ/RMJ*AL1Y»1. /REINF
RSMI(4,2)=0.

RSMI{4,3)=0.
RSMI(4,4)=—AVIS/RMJI*AL1Y*1./REINF-ALI+EPSI
RSMI(4,5)=0.
RSMI(4,6)=AVIS*WMJ/RMJ*AL1Y*1_ /REINF

RSMI(5,1)=1./RMJI* (ALTHCV*VMJ*VMI+AVTHCV*

/ (UMI*UMJ+WMI*WMJ )
/+PRREM/CVOL*EMJ/RMJ) *AL1Y
RSMI(E,2)=-1./RMJ* (AVTHCV*UMJI)*AL1Y
RSMI(5,3)=-1./RMJ* (ALTHCV*VMJ)*AL1Y
RSMI(5,4)=-1./RMJ*AVTHCV+WMJI*AL1Y
RSMI(5,5)=-1./RMJ*PRREM/CVOL*AL1Y-ALI*EPSI
RSMI(5,6)=1./RMI* (ALTHCV*VMI*VMJ+
JAVTHCV* (UMJ*UMJ+WM.J* WM )
/+PRREM/CVOL*EMJ/RMJ) *AL1Y
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RSMI{(6,1)=0.
RSMI(6,2)=0.
RSMI(6,3)=0.
RSMI(6,4)=0.
RSMI(6,5)=0.
RSMI(6,6)=0.-ALI*EPSI

ELSE
ENDIF
THIS IS THE RSI AT I

ALY=(BPJH+BMJH) / (DY1*DY1) *THSW/BIJ
ALYT=2./(DY14DY1)=THSW

RSI(1,1)=1.0+ALYI*EPSI
THIS STEP SUBISTITUTES THE RS{I,I)} STEPS WHEN TREATING THE
VISCOUS TERMS EXCIPLICITLY

RSI(1,1)=-ALYI*EPSIY+1.
RSI(2,2)=-ALYI*EPSIY+1.
RSI(3,3)=—ALYI#EPSIY+1.
RSI(4,4)=-ALYI*EPSIY+1.
RSI(5,5)=—ALYI+EPSIY+1.
RSI(6,6)=-ALYI*EPSIY+1.

RSI(1,2)=0.
RSI(1,3)=0.
RSI(1,4)=0.
RSI(1,5)=0.
RSI(1,86)=0.

RSI{2,1)=-AVIS*UIJ/RIJ*ALY+*1./REINF
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RSI{2,2)=AVIS/RIJ*ALY*1./REINF+1.+ALYI+EPSI
RSI(2,3)=0.

RSI(2,4)=0.

RSI(2,5)=0.
RSI(2,6)=-AVIS*ULJ/RIJ*ALY*1./REINF

RSI(3,1)=-ALV*VIJ/RIJ*ALY*1./REINF
RSI(3,2)=0.

RSI{(3,3)=ALV/RIJ*ALY*1 /REINF+1.+ALYI*EPSI
RSI(3,4)=0.

RSI(3,5)=0,.
RSI(3,6)=-ALV+VIJ/RIJ*ALY*1. /REINF

RSI(4,1)=-AVIS*WIJ/RIJ#ALY*1, /REINF
RSI(4,2)=0,.

RSI(4,3)=0.
RSI(4,4)=AVIS/RIJ*ALY*1./REINF+1,+ALYI+*EPSI
RSI(4,5)=0.
RSI(4,6)=-AVIS*WIJ/RIJ*ALY*1./REINF

RSI(5,1)=-1./RIJ*(ALTHCV*VIJ*VIJ+AVTHCV* (UIJ*ULJ+WIJ*WIJ)
/+PRREM/CVOL4#EIJ/RIJ)=ALY

RSI(5,2)=1./RIJ*(AVTHCV*ULJ)*ALY
RSI(5,3)=1./RIJ*(ALTHCV*VIJ)*ALY

RSI(5,4)=1. /RIJ+*AVTHCV+WIJ*ALY
RSI(5,5)=1./RIJ*PRREM/CVOL#*ALY+1.0+ALYI*EPSI

RSI(5,6)=-1./RIJ*(ALTHCV+VIJ+VIJ+AVTHCV* (ULJ*UIJ+WIJ+*WIJ)
/+PRREM/CVOL*EIJ/RIJ)*ALY

RSI(6,1)=0.
RSI(6,2)=0.
RSI(6,3)=0.
RSI(6,4)=0.

245



aQ Q

Qo a0

OO aann

Q0

246

RSI(6,5)=0.
RSI(6,6)=1.+ALYI+EPSI

NOW DO THW RSPI "I+i"
AL1YP=1./(DY1=DY1)*THSW+BFJH/BIJ
ALIP=1./(DY1+DY1)*THSW*AJM(I,J,K)/AIM{(I,6J+1,K)
IF(J.NE.M-1) THEN

THIS IS FOR THE EXCIPLICIT VISCOUS TERMS ONLY

RSPI(1,1)=-ALIP*EPSIY
RSPI(2,2)=-ALIP*EP3IY
RSPI(3,3)=-ALIP*EPSIY
RSPI(4,4)=-ALIP*EPSIY
RSPI(5,5)=—-ALIP+EPSIY
RSPI(6,6)=-ALIP*EPSIY
RSPI(1,1)=0.-ALIP*EPSI
RSPI(1,2)=0.
RSPI(1,3)=0.
RSPI(1,4)=0.
RSPI(1,5)=0.
RSPI(1,6)=0.

RSPI(2,1)=AVIS*UPJ/RPJ*AL1YP*1./REINF
RSPI(2,2)=-AVIS/RPJ*AL1YP*1./REINF-ALIP#EPSI
RSPI(2,3)=0.

RSPI(2,4)=0.

RSPI(2,5)=0.
RSPI(2,6)=AVIS#UPJ/RPJ*AL1YP*1./REINF

RSPI(3,1)=ALV*VPJ/RPJ*AL1YP*1,/REINF
RSPI(3,2)=0.

RSPI(3,3)=-ALV/RPJ*AL1YP*1. /REINF-ALIP*EPSI
RSPI(3,4)=0.

RSPI(3,5)=0.
RSPI(3,6)=ALV*VPJ/RPJ*AL1YP+1. /REINF
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RSPI(4,1)=AVIS*WPJ/RPJ*AL1YP*1 /REINF
RSPI(4,2)=0.

RSPI(4,3)=0.
RSPI(4,4)=-AVIS/RPJI*AL1YP*1./REINF-ALIP*EPSI
RSPI{4,5)=0.
RSPI(4,6)=AVIS*WPJ/RPJ*AL1YP*1. /REINF

RSPI(5,1)=1./RPJ* (ALTHCV*VPJ*VPJ+AVTHCV=*

/ (UPJ#UPJ+WP J*WPJ) +PRREM/CVOL*EPJ/RPJ) *AL1YP
RSPI(5,2)=-1./RPJ* (AVTHCV*UPJ) *AL1YP
RSPI(5,3)=-1./RPJ*(ALTHCV*VPJ)*AL1YP
RSPI(5,4)=-AVTHCV*WFJ/RPJ*AL1YP
RSPI(5,5)=-1./RPJ*PRREM/CVOL*AL1YP-ALIP*EPSI
RSPI(5,6)=1./RPJ* (ALTHCV*VPJI*VPJ+AVTHCV=*

/ (UPJ*UP J+WPJ*WPJ) +PRREM/CVOL*EPJ/RPJ) *AL1YP

RSPI(6,1)=0.
RSPI(6,2)=0.
RSPI(6,3)=0.
RSPI(6,4)=0.
RSPI(6,5)=0,.
RSPI(6,6)=0.-ALIP*EPS]

ELSE
ENDIF

DEPOSIT THE Y-SWEEP B.C’S

THIS IS THE LOWER B.C’S
G0 TO 789
IF(J.EQ.2) THEN
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RSI(3,5)=RSI(3,5)-(GAM-1.)*TSDYM
RSI(5,1)=RSI(5,1)+(PRREM/CVOL*EN(I,2,K)/RHO(I,2,K)**2 )=*
FAL1Y

RSI(5,5)=RSI(5,5)~(PRREM/CVOL*1./RHO(I,2,K))*AL1Y
RSI(5,6)=RSI(5,6)+(PRREM/CVOL*EN(I,2,K)/RHO(I,2,K)**2 )%
/AL1Y

THIS IS YHE IMPLICIT B.C’S OF THE DISSIPATION TERM
RSI(1,1)=RSI(1,1)-EPSI*ALI
RSI(2,2)=RSI(2,2)-EPSI*ALI
RSI(4,4)=RSI(4,4)-EPSI*ALI
RSI(5,5)=RSI(5,5)-EPSI*ALI
RSI(6,6)=RSI(6,6)-EPSI*ALI

ELSE

ENDIF

START THE UPPER B.C'S

IF(J.EQ.M-1) THEN

RSI(3,5)=RSI(3,5)+(GAM-1.)*TSDYP
RSI(5,1)=RSI(5,1)+PRREM/CVOL*EN(I,M-1,K)/(REO(I,M-1,K)*%2 )%



/ALLYP

RSI(5,5)=RSI(5,5)-PRREM/CVOL#*1./RHO(I ,M-1 ,K)*AL1YP
RSI(5,6)=RSI(5,6)+PRREM/CVOL*EN{I,M-1,K)/(RHO(I, M-1,K)*x2 )=

/AL1YP

UPPER IMPLICIT DISSIPATION
RSI(1,1)=RSI(1,1)~EPSI*ALIP
RSI(2,2)=RSI(2,2)-EPSI*ALIP
RSI(4,4)=RSI(4,4)-EPSI*ALIP
RSI(5,5)=RSI(5,5)-EPSI*ALIF

ELSE
ENDIF

THIS IS A VERY SIMPLE ALTERNATIVE DISSIPATION

UCDN{1)=<EPS/(DY1**2.)*(PPJ-2.
UCON(2)=EPS/ (DY1##2.)* (PPJ-2.
UCON (3)=EPS/(DY1#%2.)*(PPJ-2.
UCON(4)=EPS/ (DY1%%2.)*(PPJ-2.
UCON(B)=EPS/ (DY1#%2 )*(PPJ~2.
UCON(6)=EPS/ (DY1#%*2.)*(PPJ-2.

*PLJ+PMI)
*PIJ+PMI)

*PIJ+PMI)

*PIJ+PMJ)
*PIJ+PMI)
*PT J+PMJ)
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786 DD 220 KK=1,IS
BMAINY (KK, J)=DUCON(KK,I,J,K)-UCON(KK)

220 CONTINUE

ADD THE SIMILAR INDICES TO FORM THE FOLL. SUBMATRICES
ATMI,ATPI ,AND ATI

DO 230 KK=1,IS

D0 230 LL=1,IS

IF(J.NE.2) THEN

BTMI(KK,LL, J)=RSMI(KK,LL)+ASMI (KK,LL)
ELSE

BTMI{KK,LL,J)=0.

ENDIF

IF(J.NE.M-1) THEN

BTPI(KK,LL, J)=RSPI(KK,LL)+ASPI(KK,LL)
ELSE

BTPI(KK,LL,J)=0.

ENDIF

BTI(XK,LL,J)=RSI(KK,LL)

230 CONTINUE

CLOSE THE Y-SWEEP-DO-LOOPS

210 CONTINUE
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THOSE IFS IS TO FIND IL AND IUY( THE LOWER AND UPPER VALUES
OF IWHICH MATRICES ARE DEFIND).

IF(I.GT.1.AND.I.LE.LX2) THEN
IL=NY2+1

IUY=NY4-1

ELSE

ENDIF

IF(I.GT.LX2.AND.I.LT.LX3) THEN
IL=NY1+1

IUY=NY4-1

ELSE

ENDIF

IF(I.GE.LX3.AND.I.LT.LX4) THEN
IL=NY1+1

IUY=NY3-1

ELSE

ENDIF

CALL NBTRIP{BTMI,BTI,BTPI,BMAINY,IL,IUY,IS)
DO 240 J=2,M-1

DO 240 KK=1,I3

DUCON (KK, I,J,K)=BMAINY(KK,J)

240 CONTINUE



200  CONTINUE

C START THE Z-SWEEP

c THIS IS THE X-DO-LOOP FOR THE Z~-SWEEP
DO 500 I=2,L-1

c THIS IS THE Y-DO-LOOP FOR THE Z-SWEEFP

DO 500 J=2,M-1

c THIS IF STATEMENT IS TO EXCLUDE THE DOMAIN THAT HAS NO
C FLOW

IF({(I.LE.LX2.AND.J.LE.NY2) .0R. (I.GE.LX3.AND.J.GE.NY3)) THEN
ELSE

UPDATE THE Z-DISSIPATVE TERMS

DO 510 K=2,N-1
UCONZ(1,K)=RHO1(I,J,K)+DUCDN(1,I,J,K)/AJM(I,J,K)
UCONZ(2,K)=RHO(I,J,K)*UX(I,J,K)+DUCON(2,I,J,K)/AIM(I,J,K)
UCONZ(3,K)=RHO(I,J,K}*VY(I,J,K)+DUCON(3,I,J,K)/AJM(I,J,K)
UCONZ (4,K)=RHO(I,J,K)*WZ(I,J,K)+DUCON(4,I,J,K)/AJM(1,J K)
UCONZ(5,K)=EN(I, J,K)+DUCON(5,I,J,K)/AJM(I,J,X)
UCONZ(6,K)=RH02(I,J,K)+DUCON(6,I,J,K)/AIM(I,J,K)

510 CONTINUE

2

2
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C START THE Y-LOOP OF THE Z-SWEEP

DO 520 X=2,N-1

C THIS 1S THE SUTHERLAND VISCOSITY RELATIONSHIP.
C VISCOSITY OF STEAM

CST=861.1

TS8R=416.1

AVSR=.1706E-6
AVS=AVSR* ( (TSR+CST) /(TE(I,J,K)+CST))*(TE(I,J,K)/TSR) **1.6

C VISCOSITY FOR AIR
CGT=110.6
TGR=273.1
AVGR=.1716E-6
AVG=AVGR* ( {TGR+CGT) /(TE(I, J,K)+CGT) )*=(TE(I,J,K)/TGR)**1.5

c MIXTURE VISCOSITY

AVSGU=(1.+
((AVS/AVR)** .5} (AMOG/AMOS) %%, 25) xx2,
AVSGD=SQRT(8.)*(1.+AMOS/AMOG)** 5
PHISG=AVSGU/AVSGD
AM0S=18.
c ASSUMING OXYGAN ONLY.
AMOG=29.
AVGSU=(1.+
((AVR/AVS) ** .5) % (AMDS/AMOG) #% . 25) x%2 .
AVGSD=SQRT(8.)*(1.+AMOG/AMOS) **.5
PHIGS=AVGSU/AVGSD

SFRAC=RHO1(I,J,K)/(RHO1(I,J,K)+RHO2(I,J,K))
GFRAC=RHO2(I,J,K}/(RHO1(I,J,K)}+RHO2(I, J,K))
AVIS=(SFRAC*AVS)/ (SFRAC+PHISG*GFRAC)+

/ (GFRAC*AVG) / (GFRAC+PHIGS*SFRAC)



C THK IS NOT NEEDED IN THIS PROGRAM BECAUSE IT IS INCLUDED IN
C THE PRNUM

THK=CP#AVIS/0.72

ALAM=-2./3 *AVIS

C THIS IS THE FOURTH ORDER DISSIPATION TERM

IF(K.EQ.2) THEN

UCO1M1=UCONZ (1,K)
UCO2M1=~UCONZ (2,K)
UCO3M1=-UCONZ(3,K)
UC04M1=-UCONZ (4,K)
UCOSM1=UCONZ {§,K)
UCO6M1=UCONZ (6,K)

UCON (1)=AJM(I,J,K) «EPSZ*COURNT* (UCONZ (1,K+2) -
/4. *UCONZ(1,K+1)+6,*xUCONZ(1,K)~
/4. =UCONY (1, J-1)+UC01M1)

UCON (2)=AJM(I,J,K)*EPSZ*COURNT* (UCONZ (2,K+2)-
/4 *UCONZ(2,K+1)+6 . xUCONZ(2,K)-
/4. %UCONZ (2,K-1)+0UC02M1)

UCON (3)=AJM(I,J,K)*EPSZ*COURNT = (UCONZ (3,K+2) -
/4. *UCONZ (3,K+1)+6 , *UCONZ(3,K)~
/4. *xUCONZ({3,K-1)+UC03M1)

UCON{(4)=AIM(I,J,K)*EPSZ*COURNT* (UCONZ (4,K+2) -
/4 .+UCONZ(4,K+1)+6.=UCONZ(4,K) -
/4. *UCONZ (4,K-1)+UCD4M1)



255

UCON(5)=AJM(I,J ,K)*EPSZ*COURNT* (UCONZ (5 ,K+2) -
/4. *UCONZ (5,K+1)+6  #UCONZ (5,K) -
/4. *UCONZ (5, K-1)+UCOSM1)

UCON(6)=AJM{(I,J,K) *EPSZ*COURNT = (UCONZ (6 ,K+2) -
/4 . *UCONZ(6,K+1)+6 . *UCONZ(6,K)}~
/4. *UCONZ(6,K~-1)+UC0OBM1)

ELSEIF(K.EQ.N-1) THEN

UCO1P1=UCONZ(1,J)
UC02P1=-UCONZ (2, J)
UC03P1=-UCONZ (3, J)
UC04P1=-UCONZ (4, )
UCO5P1=UCONZ (5, J)
UCOSP1=UCONZ (6, J)

UCON(1)=AIM(I,J,K)+EPSZ+COURNT* (UCD1P1-
/4. *UCONZ(1,K+1)+6, «UCONZ(1,K)-
/4. *UCONZ{1,K-1)+UCONZ(1,K-2))

UCON(2)=AIM(I,J,K)*EPSZ=COURNT* (UCO2P1-
/4, *UCONZ (2,K+1)+6 . *UCONZ(2,K)-
/4. #UCONZ (2,K-1)+UCONZ (2,X-2))

UCON(3)=AJM(I,J,K)*EPSZ*COURNT* (UCO3P1-
/4. *«UCONZ (3,K+1)+8 +UCONZ(3,K)-
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/4. *UCONZ{(3,K-1)+UCONY(3,K-2))

UCON (4)=AJM(T,J,K)*EPSZ*COURNT* (UC0O4P1-
/4. *UCONZ{(4,K+1)+6. *UCONZ (&,K) -
/& .*UCONZ {4 ,K-1)+UCONZ(4,K-2))

UCON{B)=AIM(TI,J,K)*EPSZ*COURNT* (UCOSP1~
/4 . *UCDNZ (B ,K+1)+6 . *UCONZ (5 ,K)~
/4. «UCONZ (5,K-1) +UCONY{5,K-2))

UCON(6)=AJM(I,J,K)*EPSZ*COURNT* (UCO6P1-
/4.%UCONZ(6,K+1)+6 . *UCONY (6,K) -
/4 .+*UCONZ (6 ,K-1)+UCONZ{6,K-2))

ELSE

DO 3081 KK=1,IS
UCON (KK)=AJM(I, J,K)*EP3Z*COURNT* (UCONZ (KK,K+2) -
/4. *UCONZ (KK,K+1)+6, *UCONZ (KK ,K) -
/4. *UCONZ (KK,K-1)+
/UCONZ (KK,K-2))
3081 CONTINUE
ENDIF
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THIS IS THE ASMI IS USED INSTEAD OF USING BSMI TO MINIMIZE THE

THE STORAGE REQUIRED BY THIS PROGRAM

DEFINE THE PREMITIVE VARIABLES AS FOLLOWS

RIJ=RHO(I,J,X)
R1IJ=RHO1(I,J,K)

R2IJ=RHO2(I,J,K)

ULJ=UX(I,J,X)
VIJ=VY(I,J,K)
WIJ=WZ(I,J,K)
EIJ=EN(I,J,K)
PIJ=PR(I,J,K)
TIJ=TE(I,J,K)

BIJ=BETA(I,J,K)

RPK=RHO(I,J,K+1)
RMK=RHO(I,J,K-1)

R1PK=RRO1(I,J,K+1)
RiMK=RHD1(I,J,K-1)

R2PK=RHO2(I, J, K+1)



RIMK=RHO2(I,J,K-1)

UPK=UX(I,J,K+1)
UMK=UX(I,J,K-1)
VPK=VY(I,J,K+1)
VMK=VY(I,J,K-1)
WPK=WZ (I, J,K+1)
WMK=WZ (I, J,K-1)
EPK=EN(I, J,K+1)
EMK=EN(I,J,K-1)
PPK=PR(I,J,K+1)
PMK=PR(I,J,K-1)
TPK=TE(I,J,K+1)
TMK=TE(IL,J,K-1)
BPK=BETA(I,J,K+1)
BMK=BETA(I,J,K-1)

BPKH=(EPK+BIJ)/2.
BMKH=(BIJ+BMK) /2.

ZPK=ZZ(I,J ,K+1)*AJM(I,J,K+1)*BETA(T,J,K+1)
ZIMK=ZZ(I,J,K-1i)*AJM(I,J,K-1}*BETA(I,J,K-1)

ALTHCV=ALV*1. /REINF-PRREM/CVOL
AVTHCV=AVIS*1./REINF-PRREM/CVOL

IF(K.EQ.2) THEN
DD 530 II=1,I3
DO 530 JJ=1,I8

ASMI(II,JJ)=0.
RSMI(II,JJ)=0.

530 CONTINUE
ELSE



540

ENDIF

IF(K.EQ.N-1) THEN
Do 540 II=1,IS
DO 540 JJ=1,IS

ASPI(II,J))=0.
RSPI(ITI,JJ)=0.

CONTINUE
ELSE
ENDIF

TSDZM=THSW/DZ*ZMK/BIJ

IF(K.NE.2) THEN
ASMI(1,1)=0.
ASMI(1,2)=0.
ASMI(1,3)=0.

ASMI(1,4)=-TSDZM*R1MK/RMK

ASMI(1,5)=0.
ASMI(1,6)=0.

ASMI (2, 1) =UMK+WMK*TSDZM
ASMI(2,2)=-WMK*TSDZM
ASMI(2,3)=0.
ASMI(2,4)=-UMK*TSDZM
ASMI(2,5)=0.

ASMI (2,6) =UMK*WMK*TSDZM

ASMI(3,1)=VMK+*WMK*TSDZM
ASMI(3,2)=0.
ASMI(3,3)=-WMK*TSDZM
ASMI(3,4)=-VMK*TSDZM
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ASMI(3,5)=0.
ASMI(3,6)=VMK*WMK*TSDZM

ASMI(4,1)=((3.-GAM) /2. *WMK*WMK+

/ (1.-GAM) /2. * (UMK*UMK+VMK*VMK) ) *TSDZM
ASMI(4,2)=(GAM-1.)*UMK+TSDZM

ASMI (4,3)=(GAM-1.)*VMK*TSDZM
ASMI(4,4)=(GAM-3, ) *WMK*TSDZM
ASMI(4,5)=(1.-GAM}*TSDZM
ASMI(4,6)=((3.-GAM) /2. *WMK*WMK+

/(L. -GAM) /2, * (UMK*UMK+VMK*VMK) ) *TSDZM

ASMI(5,1)=(GAM*EMK+WMK/RMK+ (1. -GAM) *WMK =
/ (UMK * UMK+ VMK * VMK +WMK *WMK ) ) *TSDZM
ASMI(5,2)=(GAM-1. ) *UMK+WMK+TSDZM
ASMI(5,3)=(GAM-1.)*VMK*WMK+*TSDZM
ASMI(5,4)=(-GAM*EMK/RMK+(GAM-1.)/2.*
/(3. »WMK«WMK+UMK*UMK+VMK*VMK) ) *TSDZM
ASMI(5,5)=-GAM*WMK*TSDZM
ASMI(5,6)=(GAM*EMK+«WMK/RMK+{1. —GAM) *WMK=*
/ (UMK *UMK+VMK* VMK +WMK *WMK) ) *TSDZM

ASMI(6,1)=0.
ASMI(6,2)=0.
ASMI(6,3)=0.
ASMI(6,4)=-TSDZM*R2MK/RMK
ASMI(6,5)=0,
ASMI(6,6)=0.

ELSE



ENDIF

THIS IS THE I+1
TSDZP=THSW/DZ*ZPK/B1J
IF(K.NE.N-1) THEN
ASPI(1,1)=0.
ASPI(1,2)=0.
ASPI(1,3)=0.
ASPI(1,4)=TSDZP*R1PK/RPK
ASPI(1,5)=0.
ASPI(1,6)=0.

ASPI(2,1)=-UPK*WPK*T3DZP
ASPI{2,2)=WPK*TSDZP
ASPI(2,3)=0.
ASPI(2,4)=UPK*TSDZP
ASPI(2,5)=0,

ASPI(2,6) =-UPK+WPK*TSDZP

ASPI(3,1)=-VPK+WPK*TSDZP
ASPI(3,2)=0.
ASPI(3,3)=WPK«TSDZP
ASPI(3,4)=VPK*TSDZP
ASPI(3,5)=0.
ASPI(3,6)=-VPK*WPK*TSDZP

ASPI(4,1)=((GAM-3.) /2. *WPK*WPK+

/ (GAM-1.) /2. * (UPK*UPK+VPK*VPK) ) *TSDZP
ASPI(4,2)=(1.-GAM)«UPK+TSDZP
ASPI(4,3)=(1.-GAM)*VPK*TSDZP
ASPI(4,4)=(3.-GAM)*WPK*TSDZP
ASPI(4,5)=(GAM-1.)*TSDZP
ASPI(4,6)=((GAM-3.)/2. *WPK*WPK+
/(GAM-1.) /2. * (UPK*UPK+VPK*VPK) ) *TSDZP
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ASPI(5,1)=(-GAM*EPK*WPK/RPK+ (GAM-1.}*WPK*

/ (UPK*UPK+VPK*VPK+WPK*WPK) ) *TSDZP
ASPI(5,2)=(1.-GAM) *UPK*WPK*TSDZP
ASPI(5,3)=(1.-GAM) *VPK*WPK*TSDZP
ASPI(5,4)=(GAM*EPK/RPK+{(1.-GAM) /2.*

/{3, *WPK*WPK+UPK +*UPK+VPK*VPK) ) *TSDZP
ASPI(5,5)=CGAM*WPK*TSDZP
ASPI(5,6)=(-GAM*EPK«WPK/RPK+ (GAM-1.)*WPKx*

/ (UPK*UPK+VPK+VPK+WPK#WPK) ) *TSDZP

ASPI(6,1)=0.
ASPI(6,2)=0.
ASPI(6,3)=0.
ASPI(6,4)=TSDZP*R2PK/RPK
ASPI(6,5)=0.
ASPI(6,6)=0.

ELSE
ENDIF

DO THE RSMI "I-1"

AL1Z=1./(DZ1*DZ1)*THSW*BMKH/BIJ
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ALI=1./(DZ1*DZ1)*THSW*«AJM(I,J,K)/AIM(I,1,K-1)
THIS IS FOR THE IMPLICIT DISSSIPATION TERMS

RSMI(1,1)=-ALI+EPSIZ
RSMI(2,2)=-ALI*EPSIZ
RSMI(3,3)=-ALI*EPSIZ
RSMI(4,4)=-ALI*EPSIZ
RSMI(5,5)=—ALI*EPSIZ
RSMI(6,6)=-ALI+EPSIZ

IF(X.NE.2) THEN
RSMI(1,1)=0.~ALI+*EPSI
RSMI(1,2)=0.
RSMI(1,3)=0.
RSMI(1,4)=0.
RSMI(1,5)=0.
RSMI(1,6)=0.

RSMI(2,1)=AVIS*UMK/RMK*AL1Z#*1./REINF
RSMI(2,2)=-AVIS/RMK*AL1Z+*1./REINF-ALI*EPSI
RSMI(2,3)=0.

RSMI(2,4)=0.

RSMI(2,5)=0.
RSMI(2,6)=AVIS*UMK/RMK*AL1Z*1./REINF

RSMI(3,1)=AVIS*VMK/RMK+AL1Z*1./REINF
RSMI(3,2)=0.

RSMI (3,3)=-AVIS/RMK*AL1Z#*1./REINF-ALI+EPSI
RSMI(3,4)=0.

RSMI(3,5)=0.
RSMI(3,6)=AVIS*VMK/RMK*AL1Z#1. /REINF

263



oo Qaoaoaoaoagaoan O QO a0 a o

aaQaooan

264

RSMI(4,1)=ALV*WMK/RMK*AL1Z*1./REINF
RSMI(4,2)=0,

RSMI(4,3)=0.

RSMI(4,4)=-ALV/RMK*AL1Z*1. /REINF-ALI*EPSI
RSMI(4,5)=0,
RSMI(4,6)=ALV*WMK/RMK*AL1Z*1 . /REINF

RSMI(5,1)=1. /BMK* {(ALTHCV*WMK*
WMK+AVTHCV * (UMK *UMK+VMK*VMK)
/+PRREM/CVOL*EMK/RMK) *AL1Z
RSMI(5,2)=-1./RMK* (AVTHCV*UMK)*AL1Z
RSMI(5,3)=-1./RMK*AVTHCV*VMK*AL1Z
RSMI(5,4)=-1./RMK* (ALTHCV+*WMK) *AL,1Z
RSMI(5,5)=-1./RMK+PRREM/CVOL*AL1Z-ALI*EPSI
RSMI(5,6)=1./RMK* (ALTHCV*WMEK*WMK+

AVTHCV = (UMK*UMK+VMK*VYMK)
/+PRREM/CVOL*EMK/RMK) *AL1Z

RSMI(6,1)=0.
RSMI(6,2)=0.
RSMI(6,3)=0.
RSMI(6,4)=0.
RSMI(6,5)=0.
RSMI(6,6)=0.~ALI*EPSI

ELSE



c
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ENDIF
THIS IS THE RSI AT T

ALZ=(BPKH+BMKH) / (DZ1+DZ1)*THSW

ALZI=2./(DZ1%DZ1)*THSW
RSI(1,1)=1.0+ALZI*EPSI

THIS STEP SUBISTITUTES THE R3(I,I) STEPS WHEN TREATING THE
VISCOUS TERMS EXCIPLICITLY

ALYI=2./(DZ1*DZ1)*THSW

RSI(1,1)=-ALYI*EPSIZ+1.
RSI{2,2)=-ALYI*EPSIZ+1,
RSI(3,3)=-ALYI*EPSIZ+1.
RSI(4,4)=-ALYI*EPSIZ+1.
RSI(5,5)=-ALYI*EPSIZ+1.
RSI(6,6)=-ALYI+*EPSIZ+1.

RSI(1,2)=0.
RSI(1,3)=0.
RSI(1,4)=0,
RSI(1,5)=0.
RSI(1,6)=0.

RSI(2,1)=—AVIS*UIJ/RIJ*ALZ*1./REINF
RSI(2,2)=AVIS/RIJ*ALZ*1./REINF+1.+ALZI*EPSI
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RSI(2,3)=0.
RSI(2,4)=0.
RSI(2,6)=0.
RSI(2,6)=-AVIS*UIJ/RIJ*ALZ*1./REINF

RSI(3,1)=-AVIS*VIJ/RIJ*ALZ*1./REINF
RSI(3,2)=0.
R3I(3,3)=AVIS/RIJ*ALZ»1./REINF+1.+ALZI*EPSI
RSI(3,4)=0.

RSI(3,5)=0.
RSI{(3,6)=-AVIS*VIJ/RIJ*ALZ*1. /REINF

R3I(4,1)=—ALV*WIJ/RIJ*ALZ*1./REINF
RSI{4,2)=0.

RSI(4,3)=0.
RSI(4,4)=ALV/RIJ*ALZ*1./REINF+1.+ALZI*EPSI
RSI(4,5)=0.
RSI(4,6)=-ALV+WIJ/RIJ*ALZ*1./REINF

RSI(5,1)=~1./RIJ* (ALTHCV*WIJ*WIJ+AVTHCV* (UL JxUIJ+VIJ=VIJ)
/+PRREM/CVOL+ELJ/RIJ)*ALZ
RSI(5,2)=1./RIJ*{AVTHCV*UILJ)*ALZ
RSI(5,3)=1./RIJ*(AVTHCV#VIJ)*ALZ
RS1(5,4)=1./RIJ*ALTHCV+WIJ*ALZ
RSI(5,5)=1./RIJ+«PRREM/CVOL#ALZ+1.0+ALZI*EPSI
RSI(5,6)=-1./RIJ*(ALTHCV*WIJ*WIJ+AVTHCV* (UL J*UIJ+VIJ=VIJ)
/+PRREM/CVOL*EIJ/RIJ)*ALZ

RSI(6,1)=0.
RSI(6,2)=0.
RSI(6,3)=0.
RSI(6,4)=0.
RSI{6,5)=0.
RSI(6,6)=1.0+ALZI*EPSI
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C NOW DO THW RSPI "I+1"

AL2Z=1./(DZ1%DZ1)+«THSW*BPKH/BIJ
c IF{K.NE.N-1) THEN
ALIP=1./(DZ1%DZ1)*THSW*AJM(I,J K} /AIM(I, T, K+1)

c THIS 1S FOR THE IMPLICIT DISSIPATION

RSPI(1,1)=-ALIP*EPSIZ
RSPI(2,2)=-ALIP*EPSIZ
RSPI(3,3)=-ALIP*EPSIZ
RSPI(4,4)=-ALIP*EPSIZ
RSPI(5,5)=—ALIP*EPSIZ
RSPI(6,6)=-ALIP*EPSIZ

RSPI(1,1)=0.-ALI*EPSI
RSPI{1,2)=0.
RSPI(1,3)=0.
RSPI(1,4)=0.
RSPI(1,5)=0.
RSPI(1,6)=0.

QG aaan

RSPI(2,1)=AVIS+UPK/RPK*AL2Z*1. /REINF
RSPI(2,2)=-AVIS/RPK+AL2Z*1, /REINF-ALI*EPSI
RSPI(2,3)=0.

RSPI(2,4)=0.

Qa0



Q0O 0G0

QG aaaa

RSPI(2,5)=0.
RSPI(2,6)=AVIS*UPK/RPK*AL2Z*1. /REINF

RSPI{3,1)=AVIS*VPK/RPK*AL2Z*1./REINF
RSPI(3,2)=0.
RSPI(3,3)=-AVIS/RPK*AL2Z*1./REINF-ALI*EPSI
RSPI(3,4)=0,

RSPI(3,5)=0.
RSPI(3,6)=AVIS*VPK/RPK*AL2Z*1. /REINF

RSPI(4,1)=ALV*WPK/RPK*AL2Z*1./REINF
RSPI(4,2)=0.

RSPI(4,3)=0.
RSPI(4,4)=-ALV/RPK*AL2Z*1./REINF-ALI*EFSI
R3PI(4,8)=0.
RSPI(4,6)=ALV+WPK/RPK*AL2Z*1. /REINF

RSPI(5,1)=1./RPK* (ALTHCV*WPK+WPK+AVTHCV* (UPK*UPK+VPK+VPK)

/+PRREM/CVOL*EPK/RPK)*AL2Z
RSPI(5,2)=-1./RPK* (AVTHCV*UPK)*AL2Z
RSPI(5,3)=-1./RPK*AVTHCV*VPK#AL2Z
RSPI(5,4)=-1./RPK*(ALTHCV+*WPK)#AL2Z
RSPI(5,5)=-1./RPK+PRREM/CVOL+#AL2Z-ALI+EPSI

RSPI(5,6)=1. /RPK* (ALTHCV*WPK*WPK+AVTHCV* (UPK*UPK+VPK*VPK)

/+PRREM/CVOL*EPK/RPK)*AL2Z
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RSPI(6,1)=0.
RSPI(6,2)=0.
RSPI{6,3)=0.
RSPI(6,4)=0.
RSPI(6,5)=0.
RSPI(6,6)}=0.-ALI+EPSI

ELSE
ENDIF

DEFPOSIT THE Y-SWEEP B.C’S

the following are the implicit bounary conditions
THIS IS THE LOWER EB.C’S

IF(K.EQ.2) THEN

RSI(4,5)=RSI(4,5)-(GAM-1.)*TSDZM
RSI(5,1)=RSI(5, 1)+ (PRREM/CVOL*EN(I,J,2)/RHO(I,J,2)%*2 )
/AL1Z

RSI(5,5)=RSI(5,5)-(PRREM/CVOL*1./RHO(I,J,2))*AL1Z
RSI(5,6)=RSI(5,6)+(PRREM/CVOL*EN(I,J,2)/RHO(I,J,2)**2 )=
/AL1Z
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o} ELSE

C ENDIF

o} START THE UPPER B.C’S

c IF(K.EQ.N-1) THEN

¢ RSI(4,5)=RSI{4,5)+(GAM-1.)+TSDZP

c RSI(5,1)=RSI(5,1)+PRREM/CVOL*EN(I,J,N-1)/(RHOCI,J,N-1)%%2 )%
C JAL2Z

o RSI(5,5)=RSI(5,5)-PRREM/CVOL*1./RHO(I,J,N~1)*AL2Z

c RSI(5,6)=RSI(5,6)+PRREM/CVOL*EN(I,J,N-1)/(RHOC(T,J,K-1)++2. )%
o /AL2Z

o} ELSE

c ENDIF

DO 620 KK=1,IS5

BMAINZ (KK, K)=DUCON (KK, I, J,K)-UCON (KK)

620 CONTINUE

C ADD THE SIMILAR INDICES TO FORM THE FOLL. SUBMATRICES
c ATMI ,ATPI,AND ATI

270
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DO 570 KK=1,IS

DO 570 LL=1,IS

IF(K.NE.2) THEN

CTMI (KK, LL,K)=RSMI (KK, LL)+ASMI (KX,LL)
ELSE,

CTMI(KK,LL,X)=0.

ENDIF

IF(X.NE.N-1) THEN

CTPI (KK,LL,K)=RSPI (KK,LL)+ASPI (KK,LL)
ELSE

CTPI(KK,LL,K)=0.

ENDIF

CTI(KK,LL,K)=RSI(KK,LL)

570 CONTINUE
CLOSE THE Z-SWEEP-DO-LDOPS

520 CONTINUE

CALL NBTRIP(CTMI,CTI,CTPI,BMAINZ,IL,IUZ,IS)
DO 640 K=2,N-1

DD 640 KK=1,IS
DUCON(KX,I,J,K)=BMAINZ (KX,K)

640 CONTINUE

THIS ENDIF IS TO CLOSE THE NO FLOW DOMAIN
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ENDIF

500  CONTINUE

NOW UFDATE THE PREMITIVE VARIABLES

DO 260 I=2,L-1

DD 260 J=2,M-1

DO 260 K=2,N-1
IFQ(I.LE.LX2.AND.J.LE.NY2).DR.(IAGE.LXS.AND.J.GE.NY3)) THEN

ELSE

AA=RHO(I,J,K)*UX(I,J,K)
BB=RHO(I,J,K)*VY(I,J,K)
CC=RHO(I,J,K)*WZ(I,J,K)

RHO1(I,J,K)=RHO1(I,J,K)+DUCON(1,I,J,K)/AIM(I,J,K)
RHOZ(I,J,K)=RHO2{I,J,K)+DUCON(6,I,J,K)/AIM(I, ] K}
DD=RHO1(I,J,K)+RHD2(I,J,K)
UX(I,J,K)=(AA+DUCON(2,I,J,K)/AIM(I,J,K))/DD
VY(1I,J,K)=(BB+DUCON(3,I,J,K)/AIM(I,J,K)) /DD
wzZ(1,J,K)=(CC+DUCON(4,I,J,K)/AIM(I,J,K))/DD
EN(I,J,K)=EN(I,J,K)+DUCON(S,I,J,K)/AIM(I,J,K)
PR(I,J,K)=(GAM-1.)*(EN(X,J,K)~-.5*DD*
/CURCT,J,K)*UK(I,J,K)+VY(I,J,K)*VY(I,J,K)))
TE(I,J,K)=1./(DD*CVOL)*(EN(I,J,K)~.5+DD*
/(UX(I,J,K)=UX(I,J,K)+VY(I,J,K)*VY(I,J,K)))
ENDIF

260 CONTINUE

Do 263 I=1,L
DO 263 J=1,M
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DO 263 K=1,N
RHD(I,J,K)=RHD1(I,J,K)+RHO2(I,J,X)
CONTINUE

THIS IS THE CONVERGANCE CRITERION
IF{RRITM.LE.0.0001) THEN

DO 4350 I=2,L-1

DO 4350 J=2,M-1

DO 4350 K=2,N-1

SUM1=SUM1+ABS(DUCON(1,I,J,K))

SUM2=SUM2+ABS (DUCON(2,1,J,K))

SUM3=SUM3+ABS (DUCON(3,I,J,K))

SUM4=SUM4+ABS(DUCON{4,I,J,K))

SUME=SUM5+ABS (DUCON(5,1,J,K))

SUM6=SUM6+ABS (DUCON(6,1,J,X))

IF(ITIME,gt.51) THEN

EP1=EPPS#RHO1 ((L+1)/2, (M+1)/2, (N+1)/2)
EP2=EPPS+RHO((L+1) /2, (M+1)/2, (N+1) /2) ¥UX((L+1) /2, (M+1) /2, (N+1)/2)
EP3=EPPS*RHO((L+1}/2, (M+1) /2, (N+1}/2) «VY((L+1) /2, (M+1) /2, (N+1) /2)
EP4=EPPS*RHO((L+1)/2, (M+1) /2, (N+1) /2)*WZ((L+1)/2, (M+1)/2,(N+1) /2)

EPS=EPPS*EN((L+1)/2, (M+1)/2, (N+1)/2)
EP6=EPPS*RHO2 ((L+1)/2, (M+1)/2, (N+1)/2)

ELSE

ENDIF

CONTINUE

SU1=(SUM1/ ((L-2)*(M-2)*(N-2)))
SU2=(SUM2/ ((L-2) * (M-2) *(N-2)))
SU3=(SUM3/ ((L-2) % (M-2)*{N-2)))
SU4=(SUM4/ ((L-2)* (M-2)*(N-2)))
SUS=(SUM5/ ((L-2) *{M-2)*(N-2)))

gU6e=(SUMB/ ((L-2)*{M-23*(N-2)))

WRITE(110,48) ITIME,SU1,SU2,38U3,8U4,5U05,58U6

IF(SU1.LE.EP1.AND.SU2.LE.EP2.
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/AND.SU5.LE.EPS.AND.SU6.LE.EP6) GOTOD 6535
write(*,*) epl,sul,epb,sub

ELSE

ENDIF

130  CONTINUE

6535 WRITE(101,39) ((RHO1(I,J,NZ),I=1,L),J=1,M)
WRITE(102,39) ((RHO2(I,J,NZ),I=1,L),J=1,M)
WRITE(103,39) ((RHO(I,J,NZ),I=1,L),J=1,M)
WRITE(104,39) ({(UX(I,J,NZ),I=1,L),J=1,M)
WRITE(105,39) ((VY(I,J,N2Z),I=1,L),J=1,M)
WRITE(106,39) ((EN(I,J,NZ),I=1,L),J=1,M)
WRITE(107,39) ((TE(I,J,NZ),I=1,L),J=1,M)
WRITE(108,39) ((PR(I,J,NZ),I=1,L),J=1,M)
WRITE(109,39) ((UE(I,J,NZ),I=1,L),J=1,M)

WRITE(*,*) ITIME

39  FORMAT (11E15.6)
49  FORMAT (I6,3X,6E12.5)
59  FORMAT (11F15.6)

END

THIS SUBROUTINE IS TD SOLVE NON-PERIODIC BLOCK TRIDIAGONAL
SYSTEM OF EQUATIONS WITHOUT PIVOTING
THE DIMENSION N X N HAS TO BE GREATER THAN 1

SUBROUTINE NBTRIP(A,B,C,D,IL,IU,ORDER)
INTEGER ORDER,DORDSQ
REAL#*8 A(1),B{1),C(1),D(1)
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100
200

300

A= SUB DIAGONAL MATRIX

B= DIAGONAL MATRIX

C= 3UP DIAGONAL MATRIX

D= RIGHT HAND SIDE VECTOR

IL= LOWER VALUE OF INDEX FOR WHICH MATRICES ARE DEFINED
IU= UPPER ==

ONTENTS ON THE VECTOR D ARE OVERWRITTEN

ORDER IS THE ORDER OF THE SUB, SUPER AND DIAGONAL MATRICES

ORDSQ=0RDER**2
FORWARD ELIMINATION

I=IL

IOMAT=1+(I-1)*0RDSQ

IOVEC=1+(I-1)*0RDER

CALL LUDECG(B(IOMAT),ORDER) .

CALL LUSOLV(B(IOMAT),D(IOVEC),D(IOVEC),ORDER)

DO 100 J=1,0RDER

IOMATJ=IOMAT+(J-1)+0ORDER

CALL LUSOLV(B(IOMAT),C(IOMATJ),C(ICMATJ),ORDER)
CONTINUE

CONTINUE

I=I+1
TOMAT=1+{(I-1)*0RD3Q
IOVEC=1+(I-1)*0RDER
T1MAT=IOMAT-0ORDSQ
I1VEC=IOVEC-0ORDER

CALL MULPUT(A(IOMAT),D{I1VEC),D(IOVEC),ORDER)
DO 300 J=1,0RDER

IOMATJ=IOMAT+(J-1) *ORDER
I1MATJ=I1MAT+{(J-1)*0ORDER

CALL MULPUT (A(IOMAT) ,C(I1MATJ) ,B(IOMATJ) ,ORDER)
CONTINUE
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CALL LUDECO{(B{IOMAT) ,ORDER)

CALL LUSOLV(B(IDOMAT),D(IOVEC),D(IOVEC),ORDER)
IF(I.EQ.IU) GO TO 500

DO 400 J=1,0RDER

IOMATJ=IOMAT+(J~1)*ORDER

CALL LUSOLV(B(IOMAT),C(IOMATJ),C(IOMATJ),ORDER)
CONTINUE

GO TOD 200
CONTINUE

BACK SUBISTITUTION

I=IU
CONTINUE

I=I-1

IOMAT=1+(I-1)*0RDSQ

IOVEC=1+(I-1)}*0RDER

I1VEC=IQVEC+ORDER

CALL MULPUT(C(IOMAT),D(I1VEC),D(IOVEC),DRDER)

IF(I.GT.IL) GO TO 600

RETURN
END

SUBROUTINE TO CALCULATE L-U DECOMPOSITION

SUBROUTINE LUDECO(A,ORDER)
INTEGER URDER

REAL*8 A(ORDER,1),SUM

DO 8 JC=2,0RDER
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B A(1,JC)=A(1,JC}/A(L,1)
JRJC=1

10 CONTINUE
JRIC=JRIC+1
JRICM1=JRIC~1
JRICP1=JRJIC+1

DO 14 JR=JRIC,ORDER
SuM=A(JR, JRJC)
DO 12 JM=1,JRJICM1
12 SUM=SUM-A(JR, JM)*A(JM, JRJIC)
14 A(JR,JRJIC)=8SUM
IF(JRJC.EQ.ORDER) RETURN
DD 18 JC=JRJCP1,0RDER
SUM=A (JRJC, JC)
DO 16 JM=1,JRICM1
16 SUM=SUM-A(JRJIC, JM)*A(JM,JC)

18 A(JRJIC,JC)=SUM/A(JRJC,JRIC)
GO TC 10

END

SUBROUTINE TO MULTIPLY A VECTOR B BY A MATRIX A

SUBROUTINE MULPUT(A,B,C,0ORDER)
INTEGER ORDER
REAL*8 A(1),B(1),C(1),SUM

DO 200 JR=1,0RDER

SUM=0.0

D0 100 JC=1,0RDER

IA=JR+(JC-1)*0RDER
100 SUM=SUM+A(IA)*B(IC)
200 C(JR)=C(JR)-SUM
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14

16
18

RETURN
END

SUBROUTINE TO SOLVE LINEAR SYSTEM QOF EQUATIONS

SUBRQUTINE LUSOLV(A,B,C,ORDER)
INTEGER ORDER
REAL*8 A(ORDER,1),B(1),C(1),5UM

C(1)=C(1)/A(1,1)

DO 14 JR=2,0RDER
JRM1=JR-1

SUM=B (JR)

DO 12 JM=1,JRM1
SUM=SUM-A (JR, JM) *C(IM)
C(JR)=SUM/A(JR,JR)

DO 18 JRJR=2,DRDER
JR=0RDER-JRJR+1
JRP1=JR+1

SuM=C(JR)

DO 16 JMJM=JRP1,0RDER
JM=0RDER-JMJM+JRP1
SUM=SUM-A(JR, JM)=C (M)
C(JR)=SUM

RETURN

END

THIS SUBROQUTINE IS FOR NON-PERIODIC SYSTEM OF EQUATIONS
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SUBROUTINE PBTRIP(A,RB,C,D,IL,IU,ORDER)

INTEGER ORDER,ORDSQ

REAL#*8 A(1),B(1),C(1),D(1)

REAL*8 AD(36),CD(36)

IS=IL+1
IE=I"7-1
ORDEQ=0RDER#**2

TUMAT=1+(IU-1)*0RDSQ
IUVEC=1+{IU-1)=0RDER
IEMAT=1+(1IE-1)*0RDSQ
IEVEC=1+({IE-1)*0RDER

I=IL
IOMAT=1+(I-1)=0RD3Q
IDVEC=1+(I-1)*0RDER

CALL LUDECO{B(IOMAT),ORDER)
CALL LUSQOLV({B(IOMAT),D(IOVEC),D(IOVEC),ORDER)

DO 10 J=1,0RDER

IOMATJ=IOMAT+(J~1)*0RDER
CALL LUSOLV(B(IOMAT),C(IOMATJ),C(IOMATJ),ORDER)
CALL LUSOLV(B(IOMAT),A(IOMATJ),A(IOMATJ),ORDER)

CONTINUE

D0 200 I=I8,IE
IOMAT=1+{I-1}=0RDSQ
IOVEC=1+(I-1)*0RDER
TIMAT=IOMAT-ORDSQ
I1VEC=IQVEC~-URDER

D0 20 J=1,0RD3Q
IOMATJ=J-1+I0MAT
TUMATJ=J-1+IUMAT
AD(J)=A(IOMATJ)}
CD (J)=C(IUMATJ)
A(IOMATI)=0.0
C(IUMATI)=0.0
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CONTINUE

CALL MULPUT(AD,D(I1VEC),D(IOVEC),URDER)
D0 22 J=1,0RDER

IOMATJ=IOMAT+{J-1)*0RDER
T1MATJ=T1MAT+{J-1)*0RDER

CALL MULPUT{AD,C(IiMATJ),B(IOMATJ),ORDER)
CALL MULPUT{AD,A(I1MATJ),A(IOMATJ),ORDER)
CONTINUE

CALL LUDECO({B(IOMAT),ORDER)

CALL LUSOLV(B(IOMAT),D(IOVEC),D(IOVEC),URDER)

DG 24 J=1,0RDER
IOMATJ=IOMAT+(J-1)*0ORDER

CALL LUSOLV(B(IOMAT),C(IOMATJ),C{IOMATJ),ORDER)
CALL LUSOLV(B(IOMAT),A(IOMATJI),A(IOMATJ),ORDER)
CONTINUE

CALL MULPUT(cD,D(I1VEC),D{IUVEC),ORDER)

DO 26 J=1,0RDER

TUMAT J=IUMAT+(J-1}*=0RDER
IIMATI=I1MAT+(J-1)*ORDER

CALL MULPUT(CD,A(I1MATJ),B(IUMATJ), ORDER)

CALL MULPUT(CD,C(I1MATJ),C(IUMATJ)},ORDER)
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CONTINUE

CONTINUE

DO 30 J=1,0RDSQ

IUMATJ=J-1+TIUMAT

AD (J)=A(IUMATJ)+C(IUMATJ)

CONTINUE

CALL MULPUT{AD,D(IEVEC),D(IUVEC),ORDER)

DD 32 JI=1,0RDER

IUMATJ=IUMAT+(J~1)*0RDER
IEMATJ=IEMAT+(J-1)+«0ORDER

CALL MULPUT(AD,C(IEMATJ),B(IUMATJ) ,ORDER)
CALL MULPUT(AD,A(IEMATJ),B(IUMATJ),ORDER)
CONTINUE

CALL LUDECO(B(IUMAT),ORDER)}

CALL LUSOLV(B{(IUMAT),D(IUVEC),D{IUVEC),DRDER)

DO 40 IBAC=IL,IE

I=IE-IBAC+IL

IOMAT=1+(I-1)*0RDSQ

IOVEC=1+(I-1)*0RDER

I1VEC=IOVEC+0RDER

CALL MULPUT({A(IOMAT),D(IUVEC),D{IQVEC),ORDER)

CALL MULPUT(C(IOMAT),D(I1VEC),D(IDVEC),ORDER)
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40 CONTINUE
RETURN

END

THIS IS THE END OF THE SUBROUTINES

THIS SOUBROUTINE IS TO SOLVE THE HEAT AND THE MASS
TRANSFER
FOR SHELL AND TUBE CONDENSORS.

THE METHUD APPLIED HERE FOR THE MASS TRANSFER PART IS THE
FILM

THEORY. FOR MORE EXPLANATION OF THS METHOD REFfER TG THE
BOOK

"TRANSFER PROCESSES" BY EDWARDS, DENNY AND MILLS.

SUBROUTINE NONS(TS,AMDD,P3,TC,HSA,QUA,HEAS,FIS,UE,DK,PE,
/TE,L,M,N,FISE, HFG,VINF, ALINF,RINF,RHOL1,SENSH,RGAS, I, J,K,HCA)

DIMENSION TS(L,M,N),AMDD(L,M,N),PS(L,M,N),TC(L,M,N),

JHSACL,M,N) ,QDA(L,M,N) ,HEAS(L,M,N) ,FIS(L,M,N),
/UE(L,M,N),PE(L,M,N),TE(L,M,N),FISE(L,M,N) ,HFG(L,M N} ,RHOL1 (L ,H,N),
JHCACL,M,N)
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PI=3,1415927

AT THIS STAGE, ALL VALUES RECEIVED FROM THE MAIN PROGRAM
ARE NON-DIMENSIONALIZED.

WE NEED TO DE-NDN-DIMENSIONALIZE THEM AT THE BEGINING OF
THE SUBROUTINE BECAUSE ALL

NODTATIONS AT THIS SUBROUTINE ARE NOT NON-DIMENSIONALIZED.

TE(I,J,K)=TE(I,J,K)*VINF*VINF
PE(I,J,K)=PE(I,J,K)*RINF*VINF*VINF
RRR=UE(I, J,X)
UE(I,J,K}=ABS(UE{I,J,K)#VINF)

DX=DX*ALINF

C1 AND C2 ARE CONSTANTS OF THE SQUTHERLAND VISCOSITY
EQUAUATION.

C1=1.458E-6
C2=110.

PREA IS THE PRANDTLE NUMBER AT BULK TEMPERATURE OF THE
MACROSCOPIC SUSTEM.

IT IS ASSUMED THAT THE STEAM IS PERFECT GAS

PREA=0.T72

UCA IS THE VELOCITY OF THE CODOLANT IN THE TUBE WHICH
ASSUMED CONSTANT.

UCA=.15
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RU IS THE UNIVERSAI GAS CONSTANT.

RU=8.3143E3

GAM=1.4

RS IS THE SPECIFIC GAS CONSTANT.

G IS THE GRAVITATIONAL CONSTANT.

G=9., 80665

DI AND DO ARE THE INNER AND OUTER DIAMETER OF THE TUBE
RESP.

DI=16.1/1000.
.008
DT0=19.1/1000.
.01
CPEA IS THE HEAT CAPASITY AT CONSTANT PRESSURE AT THE BULK
OF THE MACRO. SYS.

CPEA=GAM*RGAS/ (GAM-1.)

TO AND PO ARE REFFERENCE TEMP. AND PRESSURE RES.
T0=256.

P0O=1.0133E5

AKWA IS THE THERMAL COND. OF THE WALL.

THE WALL IS ASSUMED BRASS WITH CONSTANT THERMAL COND.

AXWA=111.
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c INLET TEMP. OF COOLANT.

TC(2,J,K)=283.

c THIS DO LOOP IS X-SWEEP LOOP

XXX=FISE(I,J,K)*(25./18.)/(1.-FISE(X, J,K)+FISE(I,J,K)*(29./18.))
C ASSUMPTION OF TS

C USE FITTED STEAM TABLES
TS1=TC(I, J,K)
TS2=TE(I,J,K)
TS(I,J,K)=TS1+(TS2-TS1)/2.

c TTSAT(PE(I,J,K))

IF(TE(I,J,X).GE.TC(I,J,K)) THEN

C THIS IS THE AVERAGE COOLANT TEMPERATURE.
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TCA=(TC(I,J,K)+TS(1,J,.K))/2.

NGW START ITRATING, THIS DO LOOP FOR THE CALCULATION OF
THE INTERPHASE TEMPERATURE.

DO 500 IT=1,5000
CALCULATION OF IDEAL GAS RELATIONSHIPS.

AMEA IS THE BULK VISCOSITY OF THE MACRO. SYS. "USING
SOUTHERLAND RELATIONSHIP."

AMEA=9.888E-6
Ci*(TE(I,J,K)»x{(3, /2.))/(C2+TE(I,],K))

PE(I,J,K)=RHO1(I,J,K)*(RGAS+TE(I,J,K))

AKEA IS THE BULK THERMAL COND. OF THE MACRO.SYS. "USING
SUTHERLAND RELATIONSHIP."

AKEA=(AMEA*CPEA) /PREA

ANEA IS THE KINEMATIC VISCOSITY AT THE BULK OF THE MACRO.
5Ys.

ANEA=AMEA/RHO1(I,J,K)

D12 IS THE DIFFUSION COEFFICIENT OF THE STEAM.
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D12=1.97E-5%(PO/PE(I,J,K))*(TE{I,J,K)/TO) **1.685
SC=ANEA/D12

RE # AT THE BULK OF THE MACRO. SYS.
REEA=RHO1(I,J,K)*UE(I,J,K)*DTO/AMEA

ANUEA IS THE NU # AT THE BULK OF THE MACRO. SYS.

ANUEA=0.3+{.62% (REEA** . 5) % (SC»*x,33333))/
JC(1.+(.4/3C)*x 666T %% 25)

AKMEA IS THE MASS TRANSFER COEFFICIENT AT THE BULK OF THE
MACROSCOPIC SYS.

AKMEA=(RHO1(I,J,X)*D12/DTD)*ANUEA

CALCULATION OF THE PRIMARY COLLANT HEAT TRANSFER
CORRELATION.

THE INLET TEMPERATURE AND VELOCITY ARE BUTH KNOWN.
THE FLOW IS ASSUMED TURBELLENT.

AMCA, ROCA, CPCA AND AKCA ARE VICOSITY, DENSITY, HEAT CAP.
AT CONSTANT PRESSURE, AND THERMAL
COND. RESP. AT THE AVERAGE COOLANT TEMP.

PS(1,J,K)=RHD1(I,J,K)*TS(I,J,K)*RU/18.
PSAT(TS(I,J,K))
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ROCA=ROW(TC(I,J,K))

CPCA=CPW(TC(I,J,K))

AKCA=THKW(TC(I,J,K))

ANUW(T) IS THE FITTED KINAMATIC VISCOSITY.
AMCA=ANUW(TC(I,J,K))*ROCA

RECA IS THE AVERAGE RE # OF THE COOLANT

RECA=ROCA*UCA*DI/AMCA

PRCA IS THE FRANDTL # OF THE COOLANT FOUND AT THE AVERAGE

PROPERTIES.

PRCA=AMCA*CPCA/AKCA

ANUCA IS THE AVERAGE NU # OF THE CCUOOLANT.
ANUCA=. 023+ (RECA**0Q.8)* (PRCA** . 33)

HCA IS THE COOLANT HEAT TRANSFER COEFF.
HCA(I,J,K)=AKCA*ANUCA/DI

WRITE(*,%) AKMEA,K TSMTW,ANUEA, XXX
HEAT TRANSFER RESISTANCE OF THE COOLANT.

oUi=1./(HCA(I,J,K)*DI1/DTO)
HEAT TRANSFER RESISTANCE 0OF THE WALL.
0U2=1./(AKWA* (DI+DTO) / ((DTO-DI)*=DTD))

THIS IS THE CONDENSATE HEAT TRANSFER.

AMSA, RDSA, AKSA, CPSA, ANSA ARE VISCOSITY, DESITY, THERMAL
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COND., HEAT CAPACITY
AT CONSTANT PRESSURE, AND KINEMATIC VISCOSITY EVALUATED
AT AN AVERAGE TEMP. OF THE

CONDENSATE

PS1=RHO1(I,J,K)*XXX* (RGAS*TS1)
PS(I,J,K)=RHO1(I,J,K)*XXX*(RGAS*TS(I,J,K))
PS2=RHO1 (I, J,K)*XXX* (RGAS*TS2)

PS1=PSAT(TS1)
PS(I,J,K)=PSAT(TS(I,J,K)>

PS2=PSAT(TS2)
WRITE(*,*) PS1,PS(I,J,K),PS2,PE(I,J,K)

ROSA=ROW (TS (I,J,K))

AMSA=ANUW(TS(I,J,K))*R0OSA
AKSA=TBKW(TS(I,J,K))
CPSA=CPW(TS3(I,J,K))

ANSA=ANUW(TS(I,J,K))

ROSA1=ROW(TS1)

AMSA1=ANUW(TS1)*ROSA

AKSA1=THKW(TS1)

289



o}

CPSA1=CPW(TS1)

ANSA1=ANUW(TS1)

ROSAZ2=ROW(TS2)

AMSA2=ANUW (TS2)*ROSA
AKSA2=THKW(TS2)
CPSA2=CPW(TS2)
ANSA2=ANUW (TS2)
WRITE(*, %) TC(I,J,K),TsS(I,J,K),TE(I,J,K)
HFG IS THE LATENT HEAT OF VAPORIZATION.

TSAT=TS

HFG(I,J,K)=HV(PS(I,J,K))-HF(PS(I,J,K))

GRSA I3 THE GRASHOF # OF THE CONDENSATE.

GRSA=(G*DTD*%3 . ) JANSA**2,
GRSA1=(G*DTO**3.) /ANSA1**2,
GRSAZ2=(G*DTO**3.) /ANSAZ**2,

PRSA IS THE PRNDTL # OF THE CONDENSATE.

PRSA=AMSA*CPSA/AKSA
PRSA1=AMSA1*CPSA1/AK3Al
PRSAZ2=AMSA2+CPSA2/AKSA2

200



C FIS IS THE CONCENTRATICN RATIO OF THE STEAM AT THE
C INTERPHASE.

FIS(I,J,K)=P3(I,J},K)/(PS(I,J,K)+(29./18.)%*
/(PE(L,J,K)-PS(I,J,K)))

FIS1=PS51/(PS1+(29./18.)*=(PE(I,J,X)-PS1))
FIS2=P32/(PsS2+(29./18.)*(PE(I, J,K)-PS2))
c THIS IS THE LATENT HEAT TRANSFER FLUX

c WRITE(*,*) FIS(I,J,K),FIS1,FIS2
QOLD=QUA(I,J,K)
QOA(I,J,K)=-AKMEA*LOG(1.+(FISE(I,J,K)-
/FIS(I,J,K))/(FI3(I,J,K)-1.))*HFG(I,],K)

QOALl=-AKMEA*LOG(1i.+(FISE(I,J,K)-
/FIS1)/(FIS1-1 ))*HFG(I,J,K)
IF(FIS2.GE FISE(I,J,K)) THEN
QOA2=0.

ELSE
QOA2=-AKMEA=LOG(1.+{(FISE(I,J,K)-
/FIS82)/(FI82-1.))+HFG(I,J,K)

ENDIF
QNEW=QDA(I,J,K)
c WRITE(*,*) FIS1,FIS(I,J,K),FIS2,FISE(I,J,K)
c WRITE(*,*) PS1,PS(I,J,K),P52,PE(I,J,K)
c CALCULATION OF THE SENSIBLE HEAT.
c ALL PROPERTIES ARE EVALUATED AT TEA.

c THIS IS THE RE # OF SENSIBLE HEAT TRANSFER.

REEAS=RHO1(I,J,K)*UE(I,J,K)*DTO/AMEA
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ANUEAS IS THE NU # AT THE BULK HEAT TRANSFER OF THE MACRO.

SYS.
ANUEAS=0.3+(.62% (REEA**.5) % (PREA** _33333))/

/(1. +(.4/PREA)** _666T) ** _ 25)

THIS IS THE CONDENSATION FLUX RATE

AMDD(I,J,K)=QOA(I,J,K)/HFG(I,J,K)

HEAT TRANSFER COEFF. FOR PURE STEAM.
HEAPS=AKEA*ANUEAS/DTO

THIS IS A SIMPLYFING FACTOR.
SIMP=AMDD(I,J,K)*CPEA/HEAPS

THIS IS THE SENSIBLE HEAT TRANSFER COEFF.

HEAS(I,J,K)=-SIMP/(EXP (-SIMP)-1.)*HEAPS

MODIFIED QOA.

QOA(I,J,K)=QDA(I,I,K)
+HEAS(I,J,K)*(TE(I, },K)~TS(I,J,K))

THIS PART WILL BE EXPORTED TO THE MACROSCOPIC SYSTEM
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FAC=AKSA/DTO* (GRSA*PRSA/ (3.6%CPSA/HFG (I, J,K)))**.25
FAC1=AKSA1/DTD*(GRSA1+PRSA1/(3.6%CPSA1/HFG(I,J,K}))** 25
FAC2=AKSA2/DTO* (GRSA2#PRSA2/ (3.6%CPSA2/HFG(I,J,K)))**.25
THIS IS Ta-Tc

TSMTW=(QOA(I,J,K) /FAC)**(4./3.)
TSMTW1=(QDA1/FAC1)*%({4./3.)

TSMTW2=(QOA2/FAC2) *x{(4./3.)
HSA IS THE HEAT TRANSFER COEFF. OF THE CONDENSATE.

HSA(I,J,K)=FAC*(1./TSMTW)*%(.25)

HSA1=FAC1%(1./TSMTW1)**(.25)
IF(TSMIW2.LE.0.) THEN
HSA2=100000.

ELSE

HSA2=FAC2# (1. /TSMTW2)**(.25)

ENDIF

10U3 IS THE HEAT TRANSFER RESISTANCE OF THE CONDENSATE.
0U3=1./HSA(I,J,K)

QU31=1./HSA1

0U32=1./HSA2

UU=1./(0U1+0U2+0U3)

UU1=1./(QU1+0U2+0U31)

UUZ=1./(0U1+0U2+0U32)
THIS IS THE PREVIOUS TS

TSOLD=TS(I,J,K)
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F=TS(I,J,K)-TC(I,J,K)-QOA(T,J,K)/UU
F1=TS1-TC(I,J,K)-QOA1/UU1
F2=TS2-TC{(I,J,K)-QUAZ/UU2
IF({(F1i*F).GT.0.) THEN

TS1=TS8(I,J,X)

EL3E

T32=TS(I,J,K)

ENDIF

TSCI,J,K}=TS1+{(T32-TS1)/2.

WRITE(*,*) F,F1,F2,TS(I,J,K)

THIS IS NEW TS.

TSNEW=TsS(I,J,K)

WRITE(*,*) QOA(I,J,K),T3(I,J,K),TC(I,J,K), IT

CONVERGENCE CRITERION.

CONV=ABS (TSNEW-TSOLD) /TSNEW
CONV=ABS (QNEW-QOLD)
IF{CONV.LT.1.E-4) GOTD 200

NOW MODIFY THE AVERAGE TEMPERATURES TCA, AND TSA

TIWMTC=QOA(I,J,K)/HCA(I,J,K)

WRITE(*,*) PS(I,J,K},PE(I,J,K)

WRITE(*,*) TC(I,J,K),TS(I,],K),I,J,K

TCA=TC(IL,J,K)+TIWMIC/2.

TSA=TS(I,J,K)-TSMTW/2.
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C TEA=(TE(I,J, K)+TS(I,J,K))/2.

500 CONTINUE

200 TC(I+1,J,K)=TC(I,J,K)+4.*QOA(I,J,K)*DX/
/ (ROCA*UCA*DTO*CFCA)

ELSE
QOA(I,J,K}=0.
AMDD(I, J,K)=0.
ENDIF

c CLOSE THE X DO LOOP.

c NOW NON-DIMENSIONALIZE AGAIN.

TE(I,J,K)=TE(I,J,K)/(VINF*VINF)
PE(I,J,K)=PE(I,J,K)/(RINF+VINF*VINF)
UE(I,J,K)=UE(I,J,K)/VINF

DX=DX/ALINF

RETURN

END
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THIS SOUBROUTINE IS TO SOLVE THE HEAT AND THE MASS
TRANSFER
FOR PACKED BED CONDENSORS.

THE METHOD AFFLIED HERE FOR THE MASS TRANSFER PART IS THE
FILM

THEQRY. FOR MDRE EXPLANATION ABOUT THS METHOD REFfER TO
THE BOOK

"TRANSFER PROCESSES" BY EDWARDS, DENNY AND MILLS.

SUBROUTINE NONP(TS,AMDD,PS,TC,H3A,QODA,HEAS,FIS,UE,DX,PE,
/TE,L,M ,N,FISE,HFG,VINF,ALINF ,RINF,RHO1,SENSH,RGAS,I,J,K)

DIMENSION TS{L,M,N),AMDD(L,M,N),PS(L,M,N),TC(L,M,N),
/HSA(L,M,N),Q0A(L,M,N) ,HEAS(L,M,N) ,FIS(L,M,N),
/UE(L,M,N) ,PE(L,M,N) ,TE(L,M,N) ,FISE(L,M,N) ,HFG(L,M,N) ,RHO1 (L, M,N)

PI=3.1415827

AT THIS STAGE, ALL VALUES RECEIVED FROM THE MAIN PROGRAM
ARE NON-DIMENSIONALIZED.

WE NEED TO DE-NON-DIMENSIONALIZE THEM AT THE BEGINING OF
THE SUBROUTINE BECAUSE ALL

NGTATIONS AT THIS SUBROUTINE ARE NOT NON-DIMENSIONALIZED.

TE(I,J,K)=TE(I,J,K)*VINF*VINF
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PE(I,J,K)Y=PE(I,J,K)*RINF*VINF*VINF
RRR=UE(I,J,K)
UE(L,J,X)=ABS(UE(I,J,K)*VINF)

DX=DX=ALINF

Cl1 AND C2 ARE CONSTANTS OF THE SOUTHERLAND VISCOSITY
EQUAUATION.

C1=1,4E88E-6
C2=110.

PREA IS THE PRANDTLE NUMBER AT BULK TEMPERATURE OF THE
MACRUOSCOPIC SUSTEM.

IT IS ASSUMED THAT THE STEAM IS PERFECT GAS

PREA=0.72

UCA IS THE VELOCITY OF THE COOQLANT IN THE TUBE WHICH
ASSUMED CONSTANT.

UCA=.15

RU IS THE UNIVERSAL GAS CONSTANT.
RU=8.3143E3

GAM=1.4

RS IS THE SPECIFIC GAS CONSTANT.

G IS THE GRAVITATIONAL CONSTANT.

G=9.80665
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DTO ARE THE INNER AND OUTER DIAMETER OF THE TUBE RESP.

DT0=19.1/1000.

CPEA IS THE HEAT CAPASITY AT CONSTANT PRESSURE AT THE BULK
OF THE MACRO. SYS.

CPEA=GAM*RGAS/ (GAM-1.)

TO AND PO ARE REFFERENCE TEMP. AND PRESSURE RES.
T0=256.

P0O=1.0133E5

AKWA IS THE THERMAL COND., OF THE WALL.

THE WALL IS ASSUMED BRASS WITH CONSTANT THERMAL COND.

AKWA=111.

INLET TEMF. OF COOLANT.

TC(2,J,K)=283.

THIS DO LOOP IS X-SWEEP LOOP
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XXX=FISE(I,J,K)=(29./18.)/(1.-FISE(I,J,K)+FISE(L,J,K)*(29./18.))

ASSUMPTION OF TS

USE FITTED STEAM TABLES
TS1=TC(I,J,K)
TS2=TE(I,J,K)
TS(I,J,K)=TS1+(TS2-T51)/2.

TTSAT(PE(I,J.K))

IF(TE(I,J,K).GE.TC(I,J,K)) THEN

THIS IS THE AVERAGE CODLANT TEMPERATURE.

TCA=(TC(I,J,K)+TS(I,J,K))/2.

NOW START ITRATING, THIS DO LOOP FOR THE CALCULATION OF

THE INTERPHASE TEMPERATURE.
DO 500 IT=1,5000
CALCULATION OF IDEAL GAS RELATIONSHIPS.

AMEA IS THE BULK VISCOSITY OF THE MACRO. SYS.
SOUTHERLAND RELATIONSHIP."

AMEA=9.888E-6
C1%(TE(I,J,K)*=(3./2.))/(C2+TE(I,J,K))

"USING
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o] PE(I,J,K)=RHO1(I,J,X)*(RGAS*TE(I,J,K))
C AKEA IS THE BULK THERMAL COND. OF THE MACRD.SYS. "USING
c SUTHERLAND RELATIONSHIP."

AKEA=(AMEA*CPEA) /PREA

c ANEA IS THE KINEMATIC VISCOSITY AT THE BULK OUF THE MACRO.
C S5YS.

ANEA=AMEA/RHO1(I,J,K)

c D12 IS THE DIFFUSION COEFFICIENT OF THE STEAM.
D12=1.97E-5=(PO/PE(I,J,K))*=(TE(IL, ], K)/TO)**1 685
SC=ANEA/D12

C RE # AT THE BULK OF THE MACRO. SYS.
REEA=RHO1(I,J,K)*UE(I,J,K)*DTO/AMEA

c ANUEA IS THE NU # AT THE BULK OF THE MACRO. SYS.
IF(SC.GE.6) THEN
ANUEA=2.+.3*%(REEA®x 6)%(SC#*%_ 3333)

ELSE
ANUEA=2 ,+ .4+ (REEA*SC)** .5

ENDIF

c AKMEA IS THE MASS3 TRANSFER COEFFICIENT AT THE BULK OF THE
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MACROSCOPIC SYS.

AKMEA={(RHO1(I,J,K)*D12/DT0) *ANUEA

PS(I,J,K)=RHO1(I,J,K}=TS(I,J,K)*RU/18.
PSAT(TS(I,J,K))

HEAT TRANSFER RE3SISTANCE OF THE WALL.

gu2=1./(4.*AKWA/DTO)

THIS IS THE CONDENSATE HEAT TRANSFER.

AMSA, ROSA, AKSA, CPSA, ANSA ARE VISCOSITY, DESITY, THERMAL
COND., HEAT CAPACITY

AT CONSTANT PRESSURE, AND KINEMATIC VISCOSITY EVALUATED

AT AN AVERAGE TEMP. OF THE
CONDENSATE

P31=RHO1(I,J,K)*XXX*(RGAS*TS1)
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PS(I,J,K)=RHDO1(I,J,K)*XXX+(RGAS*TS(I,J,X))
PS2=RHO1(I,J,K)»XXX* (RGAS*TS2)

P51=PSAT(TS1)
PS(I,J,K)=PSAT(TS(I,J,K))

PS2=PSAT(TS2)
WRITE(*,*) PS1,PS(I,J,K),PS2,PE(I,J,K)

ROSA=ROW(TS(I,J,K))

AMSA=ANUW(TS(I,J,K))*ROSA
AKSA=THKW(TS(I,J,X))
CPSA=CPW(TS(I,J.K))

ANSA=ANUW(TS(I,J,K))

ROSA1=ROW(TS1)

AMSA1=ANUW(TS1)*R0OSA
AKSA1=THKW(TS1)
CPSA1=CPW(TS1)

ANSA1=ANUW(TS1)

ROSA2=ROW(T32)

AMSA2=ANUW(TS2)*R0OSA
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AKSA2=THKW (TS2)

CPSAZ=CPW(TS2)

ANSA2=ANUW(TS2)

c WRITE(*,*} TC(I,J,K),TS(I,J,K),TE(I,J,K)
c HFG IS THE LATENT HEAT OF VAPORIZATIGN.
C TSAT=TS

HFG(I,J,K)}=HV(PS(I,J,K))Y-HF(PS(I,J,K})

Cc GRSA IS THE GRASHOF # OF THE CONDENSATE.

GRSA=(G*DTO**3.) /ANSA*+2.
GRSA1=(G*DTO*=3,) /ANSA1%%2,
GRSAZ=(C*DTO**3, ) /ANSA2*%x2,

C PRSA IS THE PRNDTL # OF THE CONDENSATE.

PRSA=AMSA*=CPSA/AKSA

PRSA1=AMSA1*CPSA1/AKSA1

PRSAR=AMSA2*CPSA2/AKSA2
c FIS IS THE CONCENTRATION RATIO OF THE STEAM AT THE
INTERPHASE.

Q

FIS(I,J,K)=PS(I,J,K)/(PS(I,J,K)+(29./18.)*
FIS1=PS1/(PS1+(29./18.)=(PE(I, J,K)-PS1))
FIS2=PS2/(PS2+(29./18.)*(PE(I,J,K)-PS2))

c THIS IS THE LATENT HEAT TRANSFER FLUX
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WRITE(*,+) FIS(I,J,K),FIS1,FIS2

QOLD=QOA(I,J,K)
QOA(I,J,K)=-AKMEA*LOG(1.+(FISE(I,J,K)-
/FIS(I,J,K))/(FIS(I,J,K)-1.))*HFG(I,J,K)

QDA1=-AKMEA*LDG(1.+{(FISE(I,J K}~
/FIS1)/(FIS1-1.))+HFG(I,J,K)
IF(FIS2.GE.FISE(I,J,K)) THEN
QoA2=0.
ELSE
QDA2=-AKMEA*LOG(1.+(FISE(I,J,K)~
/FIS2)/(FIS2-1.))*HFG(I,J,K)
ENDIF
QNEW=Q0A(I, J,K)
WRITE(x,*) FIS1,FIS(I,J,K),FI82,FISE(I,J,K)
WRITE(*,*) PS1,PS(I,J,K),PS2,PE(1,],K)

CALCULATION OF THE SENSIBLE HEAT.
ALL PROPERTIES ARE EVALUATED AT TEA.

THIS IS THE RE # OF SENSIBLE HEAT TRANSFER.
REEAS=RHO1(I,J,K)*UE(I,J,K)*DT0/AMEA

ANUEAS IS THE NU # AT THE BULK HEAT TRANSFER OF THE MACRO.
sSYs,

IF(PREA.GE.6) THEN
ANUEAS=2.+.3%(REEA**.6)* (PREA%*.3333)
ELSE

ANUEAS=2.+.4%(REEA*PREA) ** .5

ENDIF



THIS IS THE CONDENSATION FLUX RATE

AMDD(I,J,K)=Q0A(L,J,K)/HFG(I,J,K)

HEAT TRANSFER COEFF. FOR FURE STEAM.
HEAP3=AKEA*ANUEAS/DTO

THIS IS A SIMPLYFING FACTOR.
SIMP=AMDD{(I,J,K)*CPEA/HEAPS
THIS IS THE SENSIELE HEAT TRANSFER COEFF.

HEAS(I,J,K)=—SIMP/(EXP(-SIMP)-1.)*HEAPS

MODIFIED QOA.

QOA(T,J,K)=QO0A(I,J,K)
+HEAS(I, J,K)*(TE(I,J,K)-TS(1,J,K))

THIS PART WILL BE EXPORTED TO THE MACROSCOPIC SYSTEM

FAC=AKSA/DTO* (GRSA*PRSA/ (3.6+CPSA/HFG(I,J,K) )} }*+.25

FAC1=AKSA1/DTO*{GRSA1+*PRSA1/(3.6%CPSA1/HFG(I,J,K)) )% 25

FAC2=AKSA2/DT0* (GRSA2«PRSA2/ (3. 6+CPSA2/HFG(I, J,K) ) )**.25

THIS IS Ta-Tc
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TSMTW=(QOA(I,J,K)/FAC)*+(4./3.)
TSMTW1=(QDA1/FAC1) %x{4. /3.)

TSMTW2=(QOA2/FAC2) ++(4./3.)
HSA IS THE HEAT TRANSFER COEFF., OF THE CONDENSATE.

HSA(I,J,K)=FAC=(1./TSMTW)**(.25)

HSA1=FAC1+{1./TSMTW1i)*=%( 25)
IF(TSMTW2.LE.0.) THEN
HSAZ=100000.

ELSE

HSAR=FAC2%(1./TSMTWZ2)**(.25)

ENDIF

10U3 IS THE HEAT TRANSFER RESISTANCE OF THE CONDENSATE.

QU3=1./HSA(I,J,X)

QU31=1./HSA1

0U32=1. /HSA2

UU=1./{0U2+0U3)

UU1=1./(0U2+0U31)

vu2=1./{0U2+0U32)
THIS IS THE PREVIQUS TS

TSOLD=TS(I,J,K)
F=TS(I,J,K)-TC(I,J,K)-QOA(I,J, K)/UU
F1=TS1-TC(I,J,K)-Q0A1/UU1

F2=T82-TC(I,J,K)-QDA2/UU2
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IF((F1*F).GT.0.) THEN
TS1=TS(I,J,K)

ELSE

T32=TS(I,J,K)

ENDIF
TS(I,J,K)=TS1+(T32-TS81)/2.

WRITE(*,*) F,F1,F2,TS(I,J.K)

THIS IS NEW TS.

TSNEW=TS(I,J,K)

WRITE(*,*) QOA(I,J],K),TS(I,J,K),TC(I,J,K),IT
CONVERGENCE CRITERION.

CONV=ABS (TSNEW-TSOLD) /TSNEW

CONV=ABS (QNEW-QOLD)
IF(CONV.LT.1.E-4) GOTO 200

WRITE(*,*) PS(I,J,K),PE(1,J,K)
WRITE(*,*) TC(I,J,K),Ts(I1,J,K),I,},K

TSA=TS(I,J,K)-TSMTW/2.

TEA=(TE(I,J,K)}+TS(I,J,K)}/2.

500 CONTINUE

THIS IS THE PRIMARY TEMPERATURE WHICH IS ASSUMED CONSTANT
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FOR PACKED BEDS

TC(I+1,J,K)=285.
ELSE
QOA(I,J,K)=0.
AMDD(I,J,K)=0.
ENDIF

CLOSE THE X DO LOOP,

NOW NON-DIMENSIONALIZE AGAIN.

TE(I,J,K)=TE(I,],K)/(VINF*VINF)
PE(I,J,K)=PE(I,J,K)/(RINF*VINF*VINF)
UE(I,J,X)=UE(I,J,K)/VINF

DX=DX/ALINF

RETURN
END
ALL UNITS ARE SI UNITS(i.e T IN K, P IN N/M2, ENTHALPY IN J/KG,

THERMAL CON. IN W/MK,
DENSITY IN KG/M3, CP IN J/KG K, NU INM2/SEC )

THIS FUNCTION GIVES A RELATIONSHIP OF PSAT(TSAT)
FUNCTION PSAT(TSAT)
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X1=5.56268E-1

X2=-2.069575E-3

X3=-4.338086E-6

X4=1.306466E-8

X56=-5.830308BE~12

X6=-1.735039E-16

X7=2.540331E~-16
IF(TSAT.GE.273.15.AND.TSAT.LE. 305.) THEN
PSAT=X1+X2*TSAT+X3*TSAT**2. +X4*TSAT**3 , +XE+TSAT»*>4 . +
/XExTSAT*x5  +XT+*TSAT**6,
ELSEIF(TSAT.GT.305.AND.TSAT.LE,.350.) THEN
X1=2.267565E~1

X2=1.53716BE-3

X3=7.357538E-6

X4=-2.980122E-8

X5=-3.012597E-10

X6=3.864352E-13

X7=1.368178E-15
PSAT=X1+X2«TSAT+X3*TSAT**2 . +X4*TSAT**3 . +X5*TSAT**4 .+
/E6%TSATH*5, +XT#TSAT**6.
ELSEIF(TSAT.GT.350.AND.TSAT.LE.660.) THEN

X1=-16.984b4
X2=1.154685E~-1
X3=-1.4S2E-4

%4=-1.866152E-7

X5=4.152246E-10

X6=-3.366653E-12

X7=8.031262E-15
PSAT=X1+X2#TSAT+X3*TSAT*%2, +X4*TSAT*+3. +X5+xTSAT**4. +
/XEXTSAT**5 , +X7*TSAT**6.

ELSE

WRITE(*,%) "PSAT IS OUT OF RANGE"

ENDIF

CONVERT PRESSURE FROM N/M2*1.E-5 TO N/M2
PSAT=PSAT*1.E5

END

THE FOLLOWING FUNCTION IS A FITTING FUNCTION OF THE
SATURATED WATER ENTHALPY



TAKEN FROM RETRAN

FUNCTION HF(P)

DIMENSION A(9),B(9),C(9)

CONVERSION OF PRESSURE FROM N/M2 TO PSI

P=P/6895.

A{1)=.6970887859E2
A(2)=.3337529994E2
A(3)=.2318240736E1
A(4)=.1840599513E0

A(5)=-_.5245502284E~2

A{B)=.2B7800T02TE-2
A{7)=.1753652324E-2

A(8)=-.4334859620E-23

A{9)=.3325699282E-4

B(1)=.8408618802E8
B{2)=.3637413208E6
B(3)=-.4634506669E6
B(4)=.1130306339E6
B(5)=-.4350217298E3
B(6)=-.3898988188E4
B(7)=.6697399434E3
B(8)=-.4730726377E2
B(2)=.126512506TE1

C(1)=.9060030436E3
C(2)=-.1426813520E2
C{3)=.1522233257E1
C(4)=-.6973992961
C(5)=.1743091663

C(B6)=-.2319717696E~-1

C(7)=.1694019149E-2

C(B8)=-.6454771710E-4
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C{9)=.1003003098E-5

IF(P.GE..1.AND.P.LE.950.) THEN

HF=0.

DO 10 I=1,9
HF=HF+A(I)*(LOG(P) ) **(I~1)

CONTINUE
ELSEIF(P.GE.950.AND.P.LE.2250.) THEN

HF=0.

DO 20 I=1,9
HF=HF+B(I)*(LOG(P))**(I-1)
CONTINUE

ELSE

HF=0.

DO 30 I=1,9
HF=HF+C(I)*{(3208,2-P)*%*.41)*x*(I-1)
CONTIKUE

ENDIF

CONVERSION OF ENTHAPY FROM BTU/LBM TO J/KG
HF=HF/4.298E-4

P=P*6895.

END

THE FOLLOWING FUNCTION IS A FITTING FUNCTION OF THE
SATURATED VAPOUR ENTHALPY
TAKEN FROM RETRAN

FUNCTION HV(P)
DIMENSION A(12),B(9),C(7)
CONVERSION OF PRESSURE FROM N/M2 TO PSI

P=P/6895.
A(1)=.1105836875E4
A(2)=.1436943T68E2
A(3)=.8018288621 -
A(4)=.1617232913E-1
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A(5)=-,1501147505E-2
A(8)=0.

A(T)=0.

A(8)=0.

A(9)=0.
A(10)=-.1237675562E-4
A(11)=.3004773304E-5
A(12)=-.2062390734E-6

B(1)=-.22342645937E7
B(2)=.1231247634E7
B(3)=-.1878847871E6
B(4)=.1859988044E2
B{(5)=-.2766701318E1
B(6)=.1036033878E4
B(7)=-.,2143423131E3
B(8)=.1690507762E2
B(9)=-.4864322134

£C(1)=.9059578254E3
C(2)=.5561857539E1
C(3)=.3434189609E1
C(4)=-.6406330628
C(5)=.59185T79484E~}
C(6)=-.2725378570E-2
C(7)=.5006336938E-4

IF(P.GE..1.AND.P.LE.1500.) THEN
HV=0.
DO 10 I=1,12
HV=HV+A(I)*(LOG(P) ) **(I-1)

10 CONTINUE
ELSEIF(P.GE.1500.AND.P.LE.2650.) THEN

HV=0.

DO 20 I=1,9

HV=HV+B(I)*(LOG(P) ) **(I-1)
20 CONTINUE
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ELSE

HV=0.

DO 30 I=1,7
HV=HV+C(I)*((3208.2-P)** . 41) **{I-1)
CONTINUE

ENDIF

CONVERSION OF ENTHAPY FROM BTU/LEM TO J/KG
HV=HV/4.299E-4

P=p*5895.

END

THE FOLLOWING FUNCTION IS FOR THE THERMAL CONDUCTIVITY OF
WATER.

IT IS ASSUMED THAT THE THERMAL CONDUCTIVITY IS A FUNCTION
OF TEMPERATURE CONLY,

ALL DATA ARE TAKEN FROM TRANSFER PROCESES BY MILLS AND
OTHERS.

FUNCTION THKW(T)

IF(T.GE.275.AND.T.LE.580.) THEN
THKW=-1.561273+1 . 564598E-24*T~3 ., 970037TE-L*T*%2. +
/4.560812E-8xT*%3, -2,  247724F-11+T**4,

ELSE

WRITE(*,*) "THERMAL COND. IS OUT OF RANGE"
ENDIF

IF(T.LE.275) THEN

T=2756
THEW=—1.561273+1 . 664538E~2*T-3.37003TE-S#T**2, +
/4.560812E~8+T#*%3, -2, 24T7T724E-11%T**%4,

ELSE

ENDIF

END
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THE FOLLOWING FUNCTION IS FOR THE HEAT CAPACITY AT
CONSTANT PRESSURE OF WATER.

IT IS ASSUMED THAT THE HEAT CAPACITY IS A FUNCTION OF
TEMPERATURE ONLY.

ALL DATA ARE TAKEN FROM TRANSFER PROCESES BY MILLS AND
OTHERS.

FUNCTION CPW(T)

IF(T.GE.275.AND.T.LE.580.) THEN
CPW=10146.91-62.78324%T+2.500216E-1+T*%2, -4, 52072E-4#T+*3 , +
/3.17923E-7*T%x%4,

ELSE

WRITE(*,*) "HEAT CAP. IS OUT OF RANGE"

ENDIF

IF(T.LE.275.) THEN

T=275.
CPW=10146.91-62.78324+T+2 . 500216E-1%T*%x2 -4 52072E—4*T*%3 +
/3.17923E-T*T**4,
ELSE

WRITE(%,*) "HEAT CAP. IS QUT OF RANGE"
ENDIF '

END

THE FOLLOWING FUNCTION IS FOR THE KINEMATIC VISCCSITY OF
WATER.

IT IS ASSUMED THAT THE KINEMATIC VISCOSITY IS A FUNCTION OF
TEMPERATURE ONLY.

ALL DATA ARE TAKEN FROM TRANSFER PROCESES BY MILLS AND
OTHERS.

FUNCTION ANUW(T)

IF(T.GE.275.AND.T.LE.330.) THEN
ANUW=61.74776~2.5E-14T~1.79165E-4+T**2, -4 96947TE~7T*T**3 .+
/5.22BE-9%T**4 ,+1.457343E-11%T**5, -
/4.6T5553E—14%T#%6,
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ANUW=ANUW*1.E-6

ELSEIF(T.GT.330.AND.T.LE.580.) THEN
ANUW=10.31275-(6.536036E-2)*T+(1.488566E~4) *T**2 . -
/{1.666241E-7)*T**3 +(2.34858E-10) «T*+4d. -
/(4.17T6862E-13)*T*%5 +2, 884012E—16+T*x6,
ANUW=ANUW#*1 .E-6

ELSEIF(T.LT.275.0R.T.CT.580.) THEN

WRITE(*,*) "MU IS DUT OF RANGE"
ENDIF

IF(T.LE.275.) THEN

T=275.
ANUW=61.74776-2.5E-1*T-1.7316BE-4%T#*2. -4 G6947TTE-T+T+*3, +
/5.225E-9#T#*4 , +1 . 457343E-11#T+%5, -
/4. 6TE553E-14%Txx6

ANUW=ANUW%1 E-6

ELSE

ENDIF

END

THE FOLLOWING FUNCTION IS FOR THE DENSITY OF WATER.

IT IS ASSUMED THAT THE DENSITY IS A FUNCTION OF TEMPERATURE
ONLY.

ALL DATA ARE TAKEN FROM TRANSFER PROCESES BY MILLS AND
OTHERS.

FUNCTION ROW(T)

IF(T.GE.275.AND.T.LE.580.) THEN
ROW=598.8134+2.828807+T-3 . 784399E-3#T**2.~7 . 474TO4E-6+T**3 .+
/1.129866E-8%T*+4.

ELSE

WRITE(*,*) "DENSITY IS OUT OF RANGE"
ENDIF

IF(T.LE.275.) THEN

T=275.

ROW=598.8134+2, 828807+T-3. 784399 E-3*T**2 -7 . 474T04E-6+T**3. +
/1.129865E-8%T**4.
ELSE

WRITE(*,*) "DENSITY IS OUT OF RANGE"



ENDIF
END

THE FOLLOWING FUNCTION IS FOR THE TEMPERATURE AT THE

SATURATION LINE AS A FUNCTION
OF PRESSURE.

FUNCTION TTSAT(PPSAT)
CONVERT PRESSURE FROM N/M2 TO N/M2#%1.E-5
PPSAT=PPSAT*1E-5
X1=3.5653E2
X2=-2.0611
X3=b.T064E-3
X4=-1.0110E-5
X5=2.1841
X6=-9,9885E~3
X7=2.5304E-5
XB8=3.8845E1
X9=-2,2420E1

TTSAT=X1+X2*PPSAT+X3%PPSAT**2, +X4*PPSAT**3,

/+X5/PPSAT+X6/ (PPSAT*#2.)+X7/ (PPSAT**3. }+
/X8%PPSAT*#* 5+X9/ (FPSAT*%.5)

CONVERT PRESSURE BACK TO N/M2
PPSAT=PPSAT*1.E5

END
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NOMENCLATURE

a speed of sound (m/s)

cp specific heat at constant pressure (J/kgK)
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vapor mass fraction; parameter defined as pv (kg/m?s)

pressure (N/m?)
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GREEK SYMBOLS

4]

stretching parameter eqn. (2.27)

3 local volume porosity

3; porosity of the tube bundle region

v specific heat ratio; parameter in Roberts’ transformaton eqn. (2.27)



8 parameter specifying nature of conservation equations

{ 0 Navier-Stokes

1  porous media with condensation

A second coeflicient of viscosity (kg/ms)
¢ internal energy (J/kg)
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u viscosity (kg/ms)
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SUBSCRIPTS
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p primary system; particle in porous media
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sat saturation
w wall

z,y,z Cartesian coordinate directions
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n—1 (n —1)th time steps
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CHAPTER 1

INTRODUCTION

1.1. General Remarks

Condensation occurs when a wet, saturated, or slightly super-heated
vapor contacts a surface which has a temperature below the saturation tem-
perature corresponding to the vapor partial pressure. Condensation also occurs
when vapor comes into direct contact with subcooled liquid. Although homoge-
neous condensation can also occur in highly subcooled metastable vapor, prac-
tical applications generally involve heterogeneous condensation. Heterogeneous
condensation itself may be divided into two types: film-wise and drop-wise.

In film-wise condensation, the condensate forms a liquid film on the
cooling surface, and it occurs when the cooling surface is easily wetted. How-
ever, in drop-wise condensation, the vapor condenses in the form of drops which
grow and detach because of the effect of gravity and/or the effect of high shear
forces after they grow large enough to overcome the interfacial forces between
the drops and the cooling surface. New drops would take the position of the
detached ones. Drop-wise condensation occurs on non-wetted cooling surfaces;
therefore, because of its lower heat transfer resistance, the heat transfer coef-
ficients are about four times larger than those of film-wise condensation [1].
When drop-wise condensation takes place on a surface, the heat transfer coef-
ficients increase with the increase of (Tsq: — Ty) to a point and then decrease,

because further increase of the degree of sub-cooling makes the cooling surface



wetted and film-wise condensation begins [1]. Because of the high heat trans-
fer coefficient, it is advantageous to have drop wise condensation. Drop-wise
condensation, however, is J{ithcult to maintain and the process will eventually
change to film-wise condensalion. However, if appropriate care is taken, such
as coating the cooling surface or adding a detergent to prevent the surface from
heing wetted, drop-wise condensation can be maintained. Because of the above
stated reasons, most surface condensers are designed to operate on film-wise
condensation.

A major difficulty encountered in condensers is the presence of non-
condensable gases. These gases, which are difficult to avoid in practice, reduce
the heat transfer coefficient of condensers by introducing an additional gas film

resistance for heat and mass transfer.

1.2. Condensation of Pure Vapors

Condensation of a saturated vapor in the absence of noncondensables is,
in principle, a liquid-side controlled process and is relatively simple to model, in
particular in regular geometries. Classical condensation models dealt with this
situation. In what follows, some of the important classical models are reviewed.

In film-wise condensation, a continuous film of liquid coats the cool-
ing surface and is driven downward by the effect of gravity. The condensate
film behavior on the cooling surface of the condenser is an important factor in
determining the heat transfer rate. The first analytical work to determine the
heat transfer coethcient was proposed in 1916 by Nusselt [2] with the following
assumptions:

1. Steady state, laminar flow, and no rippling on the condensate film.
2. Within the liquid film, heat is transferred slowly by conduction.

3. Properties of the fluid are constant.



4. Vapor does not exert any force on the liquid film.

5. Acceleration of the liquid is negligible compared to gravitational and viscous
forces.

6. Wall and interface temperalures are constant.

7. Energy deffect associated with sub-cooling of liquid film is neglected.

8. The vapor is pure.

By implementing the above assumptions with the appropriate boundary

conditions on the Navier Stokes equations, Nusselt derived the following well-

known relationship:

p?fgthgk?] & (L.1)

hnu = 0.943|: Li AT,
where ATy = (Tsqt — Tw), and g, is the component of the gravitational acceler-
ation vector along the inclined surface.

The above equation describes the liquid-side heat transfer coefficient
over an inclined plate of length L. Because pure film condensation is rarely found
without the presence of drop wise condensation, and because the condensate
has ripples that help the liquid to mix with the film, condensation heat transfer
coetlicients are usually higher than those predicted by Equation (1.1},

Rohsenow [3] solved the filmwise condensation problem, accounting for
the correct nonlinear temperature distribution. He assumed that the wall tem-
perature is constant, vapor is saturated, no vapor shear stress on the liquid film,
and the physical properties of the liquid are constant. Rohsenow also suggested
that, s, in Equation (1.1) should be replaced by h 4 +0.68¢p¢(Tsq: — T,,) Where
cpf is the specific heat of the liquid.

Chen [4]; and Koh, Sparrow, and Hartnett [5] have taken into account

the effect of the drag which the vapor exerts on the liquid. Chen [4] has suggested



the following approximate Equation that includes momentum and interfacial

shear effects.

hay [14+0684 10024874
Nu |1+ + } (1.2)

hne | 1+40.856—0.15A8

AT ki AT,
where A = 5"—}%——3 and B = 5L,
fa Hiltfg

Equation (1.2) is only valid for A < 2, B < 20 and Pry < 0.05, or
Pre> 1.

In the case of turbulent film flow, the Nusselt assumptions are evidently
not valid. Turbulent flow might occur at the lower end of the inclined plate. In
this case, heat can no longer be assumed to be transferred through the conden-
sate film by conduction, due to the significance of eddy diffusivity, which greatly
increases the heat transfer rate. Unlike the laminar case, the heat transfer co-
efficient increases with the distance along the plate ,z, because the turbulence
increases as the film thickness gets larger. The following correlation[1] gives the

average heat transfer coefficient for turbulent film condensation:

— pilps ~ ps)gzkd] 3
7 = 0.0076| 11 23) = f} R4 (1.3)
#r

where Reyp is the Reynolds number at £ = L.
Nusselt also derived the following correlation for the heat transfer co-
efficient for film condensation on a horizontal tube using assumptions similar to

those he had made for the plate geometry:

T 1/4

kf qu(Tsat - Tw)kf

Equation (1.4) was derived with the assumption that the condensation thickness
is much smaller than the radius of the tube,
In the case of forced convection, the shear forces between the condensate

and the vapor are important. In order to solve this problem correctly, it is



necessary to solve the continuity and momentum conservation equations for the
vapor and the condensate.

Shekriladze and Gomelauri [6] extended the analytical work of Nusselt
for an isothermal cylinder without separation by assuming that the change in
momentum across the condensate-liquid interface is the main factor which causes
the surface shear stress. The following result was obtained:

_ ke -
B o.gb-f-émelf2 (1.5)

where Re = B"—Zigg and ug is the steam velocity. When gravity and velocity are

involved, they recommended the following equation:

- - gDouyshyg Ve
N,=064Re 1+ [ 1+ 16922119 .
{ +( +109L )] (1.6)

A great deal of analytical work for pure vapor condensation on flat
plates and cylinders is available in the literature. An excellent review of laminar

film condensation is given by Rose [7,8].

1.3. Condensation in the Presence of Noncondensables

In the previous section, condensation of pure vapor was discussed, where
the major heat transfer resistance was due to the condensate layer which accu-
mulates on the cooling surface. The assumption of pure vapor condensation is
not valid in most practical cases, because a small amount of noncondensable
gases can easily find its way into a condenser. Collier [9] and Minkowycz [10]
reported that even 0.5% mass of air may decrease the heat transfer rate by more
than 50%.

It has been noted that a small amount of noncondensable gases present

in steam reduces the overall heat transfer coeflicient, which, in turn, degrades the



performance of the condenser. As steam condenses on the cooling surface, the
noncondensables accurnulate and form a noncondensable-rich layer between the
condensate and the steam. This gas film reduces the rate of steam that reaches
the cooling surface by introducing an additional mass transfer resistance. Figure
1.1 is a schematic of the vapor and noncondensable concentration profiles near
the vapor-condensate interphase. The flow of condensing vapor towards the
interphase results in the accumulation of noncondensable gas near the liquid
surface. The vapor pressure at the interphase is reduced significantly, even
when the concentration of noncondensables in the bulk vapor is quite small.
Othmer [11] 1 1929 studied the effect of a small quantity of air on the
temperature drop and on the condensation rate of steam, along an isothermal
surface. He carried out experiments using a shell with a tube partially filled with
liquid. The steam was allowed to pass through the shell and the liquid to pass
through the tube. He suggested an empirical correlation which relates the heat

transfer coeflicient to the steam temperature drop, and the air concentration:

log(k) = log(AT)[1.213 — 0.00247

o

3030 1] [Iog(C’ +0.505) — 1.551 — 0.009T (1.7)

where h is in Btu/(hr — fi2 — F),C is the percent volume of air, T is the
temperature of steam in degree Fahrenheit, and AT is the temperature differ-
ence between the bulk vapor and the cooling surface. In deriving his empirical
correlation, Othmer assumed that the temperature of the tube wall remained
constant, and the air-stream mixture was stagnant. Othmer’s work was followed
by a myriad of analytical, experimental, and numerical studies in the area of
condensation. Some of these investigations are discussed below.

Meisenburg, Boarts, and Badger [12] studied condensation in the pres-

ence of noncondensables, in a vertical tube and correlated the ratio of the actual
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heat transfer cocllicient h, {which includes the effect of noncondensables) to that

of Nusselt’s, k. (fopresenting condensation of pure steam) as:

ho 117
hNu T oo01l (1'8)

where ) < €' < 0.4 is the air weight percent in the mixture. For a vertical plate
Hampton {13] derived the following relation:

h
Ny

= 1.2 - 20y (1.9)

where 0 < y < 0.02 is the mass fraction of noncondensables.

In 1934, Colburn and Hougen [14] suggested a design equation for con-
densers with noncondensables. The values of ﬁ—éﬁ, where [/ is the overall heat
transfer cocflicient, are calculated at sufficient number of points, through trial
and error, by equating the heat transferred through the condensate, the tube
wall, and th(;, cooling water film, to the sum of the sensible heat of the uncon-
densed gas and the latent heat of the vapor that is transferred by diffusion.
After making the above calculations, the required condenser surface area can be
obtained by multiplying the heat transferred per hour by the integrated average
value of ﬁrf The design equations of Colburn and Hougen were later modified
by Smith [15] and Bras [16].

Condensation in the presence of noncondensables has also been inves-
tigated by Sparrow and Lin [17] where it has been shown that the presence of
non-condensable gases can reduce the heat transfer rate significantly. A pre-
dictive theory based on the continuity, momentum, and energy conservation
equations was formulated and a numerical solution was carried out.

Free convection condensation in the presence of noncondensable gases
on an isothermal vertical surface under thermal equilibrium condition was stud-

ied by Mori and Hijikata [18]. The solution was carried out by the use of a



liquid film and boundary layer adjoining the film and including small condensa-
tion droplets.

Rose [19] obtained approximate equations for forced convection con-
densation in the presence of noncondensable gas over a flat plate and horizontal
tube for calculating the transfer of vapor to the condensate surface. Saprrow,
Minkowycz, and Saddy [20] have studied the effect of a noncondensable gas over
a flat plate in a forced laminar boundary layer flow. The problem was first
catried out analytically for an arbitrary flow and was then applied to steam
as the condensing vapor and air as the noncondensable gas. Also, a numerical
solution of similarity differential equations was implemented. It has been found
that condensation in forced convection flow is much less sensitive to the effect
of noncondensables than that in free convective flow. Also, Denny, and Jusionis
[21] studied the etfect of noncondensable gas and forced flow on laminar film
condensation. The vapor conservation equations were solved numerically using

a forward marching technique.

1.4. Condensers

Condensers are very important components in power plants, chemical
plants, refrigerators, air conditioners, and many other industrial systems. The
function of steam condensers in closed thermodynamic cycles is to condense the
steam that is exhausted from the turbine, and send the condensed steam to
the feed pump. Broadly speaking, condensers may be classified into two types:
steam separated condensers and direct contact condensers. In steam separated
condensers, the coolant and the condensate are separated by a solid wall, while
in the direct contact condensers, the coolant is allowed to mix with the steam,
where mixing is maximized to ensure best exposure of the cooling water and

stearm.
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Fach of the above mentioned condensers is divided into other types.

The direct contact condensers can be divided into three types:

1.

b

The packed column condensers, where the coolant is allowed to flow down
as a film on a packed material, while the vapor is allowed to flow up to mix
and exchange heat with the water.

The pool vapor condensers, wherein the vapor is bubbled in a coolant pool.
The spray and tray condensers, in which the coolant is sprayed into the
vapor.

The steam separated condensers commonly used in the past may also

be divided into the following types:

1.

Plate condensers. In this type of condensers, the coolant is separated from
the vapor by corrugated metallic plates. The plates are corrugated to in-
crease the surface area between the coolant and the vapor, thereby enhancing

the heat transfer rate.

. Shell and tube condensers. These are the most common types of condensers.

They can be designed so that the vapor passes in the tubes (tube side) or
passes across the tubes (shell side). Shell and tube condensers are subdivided
into two types: process plant condensers and power plant condensers.

These two condenser types constitute the great majority of condensers

in traditional applications. The bulk of the experimental and analytical studies

reported in the past dealt with these condenser types.

Recent applications, however, demand extremely high condenser per-

formance, which often can not be met by these traditional condenser types. Two

examples of such applications are provided below.
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Ocean Thermal Energy Conversion (OTEC) is an example of modern
applications of condensers. The OTEC concept is based on utilizing the temper-
ature difference between surface and deep waters in tropical oceans for power
generation.

Since the available temperature difference is only about 20°C, extremely
efficient condensers are needed. Research aimed at developing condenser designs
capable of meeting the requirements of OTEC plants has been underway by
several investigators (see e.g., [22], 23], [24]).

Recently, phase change material {PCM) condensers have attracted the
attention of investigators involved in research associated with space power ap-
plications [25]. In this type of condensers, a PCM material which has a melting
point lower than the condensate saturation temperature, is used as the heat sink.
Condensation of the vapor results in a partial melting of the PCM material. The
thermal energy stored in the PCM in this way can be disposed of later on, or
it can be utilized for other applications. PCM condensers thus lack a primary
coolant side, and can have various geometric configuration such as packed beds,
tortuous channels, ete.

These and other new applications involve geometric and flow conditions
different from simple shell-and-tube, or plate-type condensers. The available
analytical and empirical design and analysis methods are generally inadequate

for these new condensers.

1.5, Condenser Desipn Attributes

The most important applications of condensers are in power plants and
the process industry. Power plant condensers and process plant condensers are

similar except that the former should be designed in such a way so that they can
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accommodate a high heat load while maintaining low condensing temperature
to increase the power plant efficiency. Shell-and-tube condensers are the most
widely used design of these applications. Design attributes of power plant con-
densers are discussed below. Power plant condensers operate at a condensing
temperature slightly below the coolant temperature. Due to the large power
demand, power plant condensers have a very large tube surface area which in
turn necessitates the use of a large number of tubes to increase the heat transfer
between the vapor and the coolant. Condensers usually have two outlet nozzles.
The first one is to remove the noncondensable gases which enter the condenser
through the turbine glands and from the air dissolved in the steam. The pres-
ence of such a gas adds an additional resistance to heat transfer in the form of
a gas film which reduces the performance of the condenser, hence it has to be
pumped out. The other nozzle is designed for the departing condensate.

Condensation takes place due to the vapor entering the shell through
an inlet nozzle where it passes across the tubes. The condensate is then collected
at the condensate outlet nozzle.

Shell and tube condensers are widely used in power generation plants
and they have been in use for a long time. Designs and analyses us_ing ex-
perimental, analytical and numerical methods have been a topic of extensive
research in many organizations.

The procedure for designing a condenser usually consists of the following
steps [26}:

1. Process specifications.

2. Preliminary analysis of the problem.

3. Thermal hydraulic design.
4. Metallurgical design.
5

. Structural design.
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6. Architectural design.
7. Maintenance and economics.

The third step includes the fluid and heat transfer analysis of the con-
denser. To choose the optimum configuration of a condenser, the following steps
are required:

1. A condenser configuration that satisfies material, structural, architectural,

and cost requirements, is chosen.

b

Based on the chosen configuration, thermal analysis is performed.
3. The above two steps are repeated for different configurations until the opti-
mum configuration is found.

In shell-and-tube condensers, baflles are used to support the tubes in
the shell side and to direct the steam to flow in a zigzag manner to increase the
heat transfer between the steam and the coolant. The coolant enters the tubes
through the ‘coolant inlet, loses part of its energy as it passes in the tubes, and
then leaves the condenser through the coolant outlet.

Thus, because power plant efficiency depends on the condenser perfor-
mance, the condenser should be thermal-hydraulically designed and optimized
under a set of design conditions dictated by the overall plant design. Inadequate
design of a condenser will lead to a poor power plant efficiency.

The condenser is usually selected based upon some parameters such as
tube diameter, condenser pressure, cold water temperature and velocity, tube
length, heat load, and tube material. In the thermal-hydraulic analysis of con-
densers, two important objectives have to be considered: (1) the pressure drop
across the condenser must be minimized, and (2) the overall heat transfer rate
between the steam side and the coolant side must be maximized. The achieve-
ment of the first objective enables the engineer to predict the power required

to drive the flow through the condenser, while the achievement of the second
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objective allows for maximizing the efficiency of the condenser given the size
and the inlet conditions.

Numerical methods for analysis of advanced condensation systems have
recently been published. A finite difference numerical model was developed that
studies the fluid flow and heat and mass transfer in a dual-latent packed bed
system [27, 28].

Recently, a one dimensional analysis of a packed bed of encapsulated
phase change material (PCM) and condensation was implemented [29]. In this
work the continuity and momentum equations are solved for the steam and liquid
while the energy equation is solved for the fluid and solid phase. The temporal
terms in the momentum equations are not considered. Additional numerical

models will be discussed in the forthcoming sections.

1.6. Flow Through Porous Media

As will be explained later, modern numerical models for condenser de-
sign and analysis, treat the secondary-sides of the condensers as porous media.
Porous media formulation will be the approach in this research. Therefore, be-
fore discussing modern models, the basic principles of flow in porous media will
be briefly reviewed.

The steady state bulk flow resistance through porous media was first

measured by Darcy (1856), leading to the well-known Darcy’s law {301
Vp = —u(R.5) (110)

The parameter R is a tensor of the second order rank, and is defined as:

=
=

=1 {1.11)
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where K is the permeability tenser representing the porous medium, and [ is the
identity tensor. In Cartesian coordinates R;;, representing the (i, j} component

of R, is related to the components of the permeability tensor according to:
Ri,jKj,i == éz'j (112)

where é; ; is the Kronecker delta, and K is permeability of the porous medium.

Darcy’s law describes laminar flow through a porous medium composed
of small, irregular pore passages. It is valid only for the seepage velocity domain,
which is characterized by a small Reynolds number. Experimental investigations

show that Darcy’s law is valid for 1 < Re < 10,where Re is defined as.

_ s supd
p,

Re (1.13)

Where d is some representative length scale of the porous matrix. How-
ever, as the superficial velocity, w4y,, increases to Re > 10, deviation from
Darcy’s law is observed due to the contribution of the inertia to the fluid mo-
mentum equation. Several models have been suggested, in which the effect of
fluid inertia is considered. A second order nonlinear relationship for high veloc-

ities suggested by Forchheimer (1905) [30], is:

9p = au + bu? (1.14)
dz

The most commonly used second order equation, however, was sug-
gested by Ergun (1952) [31], which applies to flow through a bed composed of

spherical particles with diameter d:

dp (1 - f)u 1-38 ,
e FEECI 3 ¢ (1.14)
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For multi-dimensional flow in a porous medium, Ergun’s equation can

be represented as [32]:
V.(p'v0) = =3Vp — p8*(RY) — p'C3%5)5 + p'g + V.(u3VV) (1.15)

where p’ = 3p, and C = 1.75(1 — 3)/d3?) is the inertial coefficient in Ergun’s
formulation.

Nonlinear equations of motion in many other forms have been suggested.
Most of them, however, are obtained experimentally, without a strong physical

basis.

1.7 Numerical Methods Applied to Power Plant Steam Condensers

Numerical methods have recently been developed for the analysis and
design of condensers because of the availability of digital computers and fast
algorithms. The advancement in speed and memory of computers has made
reliable design and analysis of condensers possible. These numerical methods
allow detailed calculations of heat transfer, mass transfer, fluid flow, tempera-
ture, pressure distributions, velocity field, and concentration of noncondensables
for various complex condenser geometries.

In the past, analysis and design of condensers heavily relied on corre-
lations and intuitive judgments to produce an optimum condenser design. An
ideal design of a condenser requires that the pressure loss of steam be mini-
mized and that gas blanketing be avoided. Gas blanketing represents conditions
where noncondnesables preferentially collect in specific parts of the condenser,
thus drastically deteriorating the performance of the condenser. Generally, the
steps required to evaluate the performance of a condenser can be summarized

as follows:
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1. Evaluation of velocity and pressure fields.

1. Evaluation of concentration of noncondensables.

3. Evaluation of heat and mass transfer rates.

4. The above steps are repeated until a satisfying conveternice is achieved.

Barly computational studies of fluid flow and heat transfer in power
plant condensers have used the network method. This method relies on experi-
mental data and apriori knowledge of flow patterns. Brasness [33] and Chisholm,
Osment, McFarlane, and Choudhury [34] developed one dimensional numerical
models, and performed comparisons between theory and experiment which in-
clude the examination of the noncondensables effect. In recent years, Davidson
and Rowe [35], Al-Sanea, Rhodes, Tatchell, and Wilkinson (36| and Shida, Kura-
gasaki and Adactu [37] have implemented two dimensional models that evaluate
the performance of condensers. The fluid flow in steam condensers, however, is
very complex and three dimensional because of the presence of the tube bundle
and baflle plates. Due to this complexity, in more recent models the fluid is
assumed to flow through a porous medium.

Butterworth was one of the early researchers, who developed analytical
criteria for deriving multidimensional, porous-media transfer correlations using
1-D shell-and-tube data and correlations [38]. Caremoli [39] has described a two
dimensional computational method, using a Cartesian coordinate system, that
evaluates the performance of a power plant condenser using coupled heat and
mass transfer and fluid flow equations. The local aver aging method was used to
account for the geometric complexity.

Caremoli’s model appears to be one of the most comprehensive in the
open literature. In view of this fact, this model will be reviewed in some detail.
The v¢as-vapor mixture continuity and momentum, and noncondensable mass

fraction conservation equations used by Caremoli [39] are as follows:
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1. Continuity equation

8(8p) | d(8pu)  8(Bpv)
at * dz t dy

= —Bm (1.17)

2. Momentum equations

8(8pu) 8(3pu?) 8(Bpuv) p . O(87zs) | 8(BTay)
5t + ez + ay = —Ba—-,@mquﬁFx‘F Az + By (118)
d(Bpuv) O(3puv) 8(B8pv?) dp ) HBTey) O(87yy)
+— + = —f3—- F +——F '
a1 9z 3y Py Protlbyt == =0 = (1.19)

3. Noncondensable (air) mass fraction equation

] / At
o(Bpe)  BBpou)  B(3pgv) _ 8 (JﬁﬂDg—f)ﬂL;_y(ﬁ”Dgg) (1.20)

at Oz dy dz
where m is the condensation mass flow rate per unit volume of the fluid mixture,
and 3 is the porosity defined as the ratio between volume occupied by fluid and
the total volume. Note that in these equations the small volume occupied by
the condensate is neglected and the density of vapor is assumed constant. The

parameter F' is the tube friction source term which has the components,
Fp = —3pCrru — 3pCGayv . (1.21)

and
Fy = =3pGyyu — 8pGayv (1.22)

where G’s are the flow resistances and they are obtained from one dimensional
single phase flow correlations. The condensation rate is related to the conden-

sation mass flux according to

m =1 (1.23)

The condensation mass flux was calculated in Caremoli’s model from:

at = 4 Teat =Ty (1.24)
hfg Rhyg
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where Tyo¢ is the temperature of vapor, T, is the temperature of the priinary
coolant, hy, 1s the latent heat of vaporization, the parameter R, the overall

thermal resistance, is obtained using various heat transfer correlations, where

the liquid-side heat transfer coefficient was obtained from Nusselt’s Equation
[2].

Three major shortcomings can be mentioned with respect to the above
described model. Firstly, the noncondensable diffusion (represented by Equation
(1.20)) is inadequate. Diffusion of mass, in particular in laminar flow conditions,
occurs over very small distances. Volume-averaged equations using grid sizes
large enough to allow volume averaging in condensers are way too large for
adequate represantation' of mass diffusion. On the other hand, neglecting the
mass diffusion entirely is known to be inappropriate, since it results in lack of
capability for predicting gas blanketing. The second shortcoming of Caremoli’s
model is the inadequate representaiion of the effect of the noncondensables on
the condensation rate. The third shortcoming is the assumption of constant
vapor density.

Zhang and Sousa [40)] recently réported a two dimensional numerical
method that predicts the flud flow and heat transfer in a shell-and-tube con-
denser. In this work, some features of previous work [35-37.3Y| are utilized. The
continuity, momentum, and air mass species conservation equations, with diffu-
sive terms included, are solved using a control-volume approach. However the
density is assumed to be locally variable. The flow resistance forces F; and F in
the momentum equations were represented in terms of pressure loss coellicients,

¢, and &, by the following relationship:

Fp = Exul, (1.25)
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F, = &l (1.26)

The loss coefficients were calculated as suggested by Rhodes and Carlucci [41].

B0 e
2
EEE ) e

where f, and f, are the friction factors and 3, is the porosity in the tube bundle

region only. The steam mass condensation rate per unit volume is obtained from:

o= (Tsar — Tp)s (1.29)
Rhgg

where H, the overall thermal resistance for each control volume, is obtained
from various empirical heat transfer correlations, and 7T,,; is the saturation
temperature at the partial steam pressure.

The foregoing criticisms, with respect to the model by Caremoli [39],

evidently also apply to the model by Zhang and Sousa [40].

1.8 Rationale and Objectives of this Research

In the previous sections, earlier work on the design and thermal analysis
of condensers was briefly reviewed. Condensers have been in service for many
decades, however, the methodology for their design was essentially empirical
until quite recently. Relatively few different geometric configurations, and most
frequently the shell-and-tube, were utilized. The experimental data base is quite
extensive for these simple and standard geometries, making empirical methods

feasible. Recent application of condensers, e.g., in space systems, Ocean Thermal
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Energy Conversion (OTEC), ete., however, are based on more complex geomet-
ric configurations, rendering much of the existing empirical methods essentially
inapplicable. Therefore, a numerical method which can address an arbitrary
condenser geometry is needed. Treating the secondary side of a condenser as a
porous medium subject to flow of a compressible gas-vapor mixture, which is the
approach in this research, provides an appropriate method for such an analysis.

The concept of application of flow through porous media to the design
and analysis of condensers was originally developed with the intention of better
modeling the multi-dimensional flow effects in the conventional shell-and-tube
heat exchangers [42], and provided an alternative to the old analytical approach
where either the flow was assumed to be one-dimensional [34], or the condenser
was finely nodalized such that each subchannel was treated separately [43|. The
porous media approach has recently been adopted by many investigators [38,
35, 39]. Nevertheless, as was explained in the previous sections, the existing
published models are inadequate, in particular with respect to their treatment
of the noncondensables.

In view of the aforementioned background, the objectives of this re-
search are:

1. To develop a numerical model for the secondary side of a condenser where
the secondary side is treated as a three-dimensional, porous medium through
which a compressible vapor-gas mixture flows. State-of-the-art constitutive
relations will be applied for the general characterization of porous media,
and the effect of noncondensables will be rigorously included in the model.

2. Study the effecs of major modeling components (e.g., viscous terms in the
momentum equations) on the overall model predictions.

3. To perform parametric calculations, and thereby examine the effect of small

concentrations of noncondensables on the performance of modern condensers.
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CHAPTER 2

MODEL DEVELOPMENT

2.1. Introduction

This chapter develops a rigorous model that overcomes most of the ma-
jor shortcomings of all previous models such as compressibility and the treatment
of noncondensables. Compressibility, however, is very crucial in the design and
analysis of condensers because part of the steam is lost in the process of con-
densation, and is compensated by a decrease in density. This change in density
might be very large, depending on the condensation rate, which necessitates
the solution of the compressible flow equations. The developed model is three-
dimensional, compressible, and includes all the porous-media and condensation
terms for shell-and-tube and packed bed systems. Moreover, the model assumes
that all transport properties, such as thermal conductivity and viscosity, are
space dependent. However, when solving the governing partial differential equa-
tions of the condenser secondary side, the steam is assumed to behavé like a
perfect gas.

The governing partial differential equations are the compressible Navier-
Stokes and noncondensable species mass conservation equations, with porous-
media and condensation terms added. The state-of-the-art implicit-compressible
numerical solution scheme (ICS) will thus be modified to include these additional
terms, and will be discussed in detail in the next chapter. Moreover, the im-
plicit numerical scheme will be modified to include any number of species mass

conservation equations.
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In order to adequately model the noncondensable effect and avoid re-
lying on purely experimental correlations, which all previous models employed,
a well-proven model that relies on sound theoretical basis 1s needed, The stag-
nant film model [45], a simple engineering method for the analysis of combined
heat and mass transfer that has proven to be very reliable when used in earlier
calculations of steam condensers, has been used. Thus, it is expected that when
this model is used in conjunction with a rigorous numerical model, the outcome

will be very promising. This model will be presented at the end of this chapter.

2.2. Overview of the Model

In this model, the porous-medium vapor continuity, mixture momen-
tum, mixture energy, and noncondensable mass species conservation equations
are presentefi for the secondary side of the steam condenser system in their
3-1 Cartesian coordinate and compressible forrn. The solution, however, is per-
formed in two different and inter-related levels in order to adequately account
for the effect of nencondensables. The conservation equations are first solved
at the macroscopic level, using the volume-averaging concept, consistent with
porous media approach. This solution provides the bulk gas mixture flow field,
and makes it possible to identify areas in the condenser where advective terms
are small and may result in the gas-blanketing phenomenon.

The bulk gas mixture flow field calculated in the macroscopic level so-
lution is then utihzed in calculating the heat and mass transfer through the
interface between the condensate liquid and the vapor-noncondnesable mixture.
These calculations, referred to hereafter as the microscopic level analysis, are
based on the stagnant-film model, and represent the distributed-parameter anal-

ysis, where the flow field inside the subchannel pores is considered.
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It has to be noted that the foregoing macroscopic and microscopic level

analyses are coupled. The macroscopic conservation equations utilize heat trans-

fer, condensation rates and heat fluxes provided by microscopic analysis, while

the microscopic level calculations use the flow velocity, pressure, density, temper-

ature and the bulk noncondensable concentration provided by the macroscopic

leve]l analysis. 'These macroscopic and the microscopic calculations are repeated

iteratively until the desired convergence criterion is achieved.

2.3. Assumptions

The model involves the following assumptions. Many of these assump-

tions, which have been made for simplicity, can be discarded and the model can

easily be modified.

1.

AT SR

The macroscopic level analysis assumes that the steam behaves like a perfect
gas, whereas the microscopic level analysis uses polynomial fitting equations
for steam and water properties.

The volume occupied by the condensate is assumed to be negligibly small.
The condensate is assumed impermeable to the noncondensable.

The cold solid surfaces are assumed to have constant thermal conductivities.
In the case of the packed bed condenser, the centerline temperature of par-
ticles is assumed constant.

The velocity of the primary system in the case of the shell-and-tube con-
denser is assumed to be constant.

Radiation heat transfer is neglected.

The steam and the noncondensable gas are in local thermal equilibrium.

. The noncondensable gas behaves like a perfect gas.



25

2.4. Macroscopic Level Model

2.4.1 Conservation Equations and Constitutive Relations

The governing conservation eguations can be written in conservative
form as follows:

¢ Vapor continuity equation:

Bpy)  9(Bpyu)  B8(Bpuv) | HBpyw)
ot T e T T ey e M

2% o5
(5:9 00 ) (2.1)

¢ Mixture momentum conservation equations:

2(3pu) | 3(3pu?) | B(Bpwv) | O(Fpuw)
at dz dy Bz

AT A ou v dw
R T (ﬁ(AJrz”)a +g,\(3 +Bz))

+<) 3 3v+8u +8 3 8u+3w
ay \""\ oz " ay P\a: " bz

+ (Fy — Bru)é + Bpgs. (2-2)

3(Bpv) 8(Bpuv) B(3p?) B(Bpvw) _ 8(3p)
at+az+ay+az”ay

d dv  du 7, du v Ow
+£(ﬁ”(£+3y))+_(ﬁ()\ +2,u) +5)\(5;+g))

2} dw  dv
— — + — — Bmuv)é + Bpg,,. 2.3
# g (905 + 52) ) + (R = areds + 0, (2.3
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O(Bpw)  0Bpuw)  d(Bpvw) 8(Bpw?®)  3(3p)
ot dz dy Az B dz

a 3 8u+8_'w a P 3w+3v
e\ T e ) ) e \PM ey T s

a du dv
+ a—(B(A —I—Qp,)— + ,BA(B— + %>)

+ (Fz - ;ﬁ'mw)ts + Boge. (2-4)

e Mixture energy conservation equation:

8(3e)  0(B(e +pu)  8(Ble+p)v) (Bl +p)w)
at * dix + dy + dz

9 dv  Ow v Bu
~ iz {ﬂ()\ + 2#)““’"‘ + 53\#(8— + 6‘_) +ﬁpv(8— + 5;)

du  dw a arT a3 v
— + — — | Bk— A+ 2p)v—
Jr_ﬁ,uw(az + 3:::):| + o (,a d:r) lﬂ( + ”)”ay
+3 8v+8u + 8 8u+8w y 3w+6v
Hu dz  dy v dr Oz a dy 0Oz
7 or a a d a
T k=) + — (B0 + 20w e + Bpu (e + =
dy dy Jy z z x
w22+ 22 e (22 2
'\ 8y T 82 Y\ oz ' By
a ar ,,
i — - é. 2.5
3 (ﬁk 32) q"s (2.5)
eNoncondensable gas mass conservation equation:

8(ﬁpg) a(ﬂpgu) a(ﬁpgv) 8(18}991‘”)
at + oz + dy t 8z

0 (ﬂp ‘%) (5pDzj) i (5@‘3"5) (2.6)

Important parameters in the above equations are defined as follows.

Parameter 3 is the local porosity, ¢” is the local heat flux, and hy, is the latent
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heat of condensation, p, is the vapor partial density, p, is the noncondensable

partial density, and

o' = pu/p (2.7)
¢ = pg/p (2.8}
P= pPut pg (2-9)

The parameter m is the local condensation rate, per unit volume, and is related
to the local condensation mass flux by Equation (1.23). The Parameter & in
Equation (2.2) through (2.5) equals one for porous medium and condensation,
and zero otherwise.

Finally, the parameters I;, F, and F, are the porous medium frictional

force terms and are defined as follows. For shell-and-tube porous media,

by = _FSE:L"U'UP
F, = —-38,vU,
F, = —8¢,wU, - (2.10)

where the pressure loss coefficients £, and £,, are defined in Equations (1.27)

and (1.28) respectively, and £, is defined as:

ézzz(%)(PfﬁDo)z(ll:i) (2.11)

The parameter f, is the friction factor and is defined as [40]:

0.619Re01%8. pn 8000
w:{ Reg ™ ™ Ree < (2.14)

1.156 Re 02%47: 8000 < Rey < 2 x 10°
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where Re; = puDo/p. Prameters f,, f,, Rey, and Re, are defined similarly
In the above equations, P is the tube pitch, Dy is the outer diameter

of the tube, and 3;, the porosity in the tube bundle region, is found from:

_ 7 { Dy 2 oo e
Br=1- Z(?) . (2.13)

For packed bed porous medium,

- g2
F, — - M—'Ku+p6‘62(u2+v2+w2)1/2u:| (2.16)
F——-&-l—(]?? 2y w?)l/2 2.17
L pCB*(u" + v + %) Fy (2.17)

and

— 8w 2, 2 2 24172
F, = —|pu X + pCB°(u" +v* +w) " “w]. (2.18)

The parameters €' and K are the inertial and the permeability coefficients in

Ergun’'s formulation, respectively [30], and are defined as:

_L75(1 - 8)
C= =5 (2.19)
242
5d (2.20)

“ =y
As noted, the momentum and energy conservation equations presented in the
above equations assume laminar flow. Laminar flow formulation was adopted
for the following reasons.
1. The flow in certain regions of the condenser is laminar.
2. The above equations can easily be modified to include turbulent effect, by
adding piurp to g and kiyrp to k , where piyrp and ki can be calculated

using appropriate eddy diffusivity models.
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3. In validating calculations, wherever the model is applied to open channels
(i.e., when Navier-Stokes equations are addressed), only laminar flow condi-
tions are considered, so that analytical solutions are available for comparison
with the numerical model predictions.

4. As will be discussed later in Chapter 4, for porous media, and for typical
condensers, the frictional and forces terms F;, Fy, and F, are dominant, and
the effect of molecular and eddy viscosities is insignificant.

The last equation of the macroscopic system governing equation, Equation
(2.8), represents the noncondensable gas continuity equation. The solution of
this equation is essential in the design and analysis of steam condensers because
it gives the local bulk concentration of the non-condensable gas. Once this
concentration is determined in conjunction with pressure, temperature, velocity
and density obtained from the solution of Equations (2.1)-(2.6), they will be
used by the macroscopic system to determine the local heat flux and the local
condensation rate per unit volume as will be shown later on in this chapter.

It has to be mentioned that Equations (2.1)-(2.6) are non linear coupled
partial differential equations and no attempt should be allowed to uncouple
Equation (2.6) from the system (2.1)-(2.5), because as the vapor condenses inside
the condenser, the noncondensable partial density changes significantly.

It also has to be noted that, the Navier-Stokes equations can be obtained by

setting 4 equal to one and 6 equal to zero in equations (2.1)-(2.5).
2.4.2 Properties

It is noted also that Equations (2.1)-(2.6) are incomplete, and constitutive

relations are needed for closure of these equations. Thus in order to close the
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system, relationships between the variables (p, p, e, T, and k) have to be es-
tablished. Furthermore, the transport properties g, and & have to be related to
some thermodynamic variables.

BEquations (2.1)-(2.6), when 8 = 1 and § = 0, have eight unknowns (pg, p, u,
v, w, p, T, e) if (, k) are either constants, or are related to other thermodynamic
properties. Thus, two more equations are needed to close the system. These are
provided by equations of state. When a perfect gas with constant specific heats

is assumed, the equation of state can be written as:

p={v—-1 (e - %(pu2 +pv? + p'w2)) (2.21)

and

1 1
T = — (e — —(pu? + p® + pw2)). (2.22)
PCy 2

The following relations are also applicable for perfect gases:
R Cp +R

3 — T andc =
-1 T ¢, P (= 1)

(2.23)

Cy —

where ¢, is the specific heat at constant volume, R is the gas constant, v is the
specific heat ratio, and ¢, is the specific heat at constant pressure. A
Sutherland’s formula for transport property u, which is based on the predic-
tions made by the kinetic theory of zases, may be written as [46]:
Ll (1)3F2___HT0 +¢ (2.24)
#0o Ty T+C
where C' is a constant that takes the values 110.6°K for air and 861.1°K for
steam.
In the parametric calculations to be presented later, the gas reference vis-

cosity po = 1716 X 10 % 10"6%}; is evaluated at a reference temperature Ty =
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273.1°K , whereas for steam pg = .1706X 10 x 10*6%'; igs evaluated at Ty =
861.1°K.
The Prandtl number, Pr, is assumed constant and equal to 0.72, from which

other transport property, &, can be found from the relation

[
k=2, 2.95
Pru ( )

The mixture viscosity is evaluated using Wilke’s formula [45].

2
Tifhq
p= Y g (2.26)
o Y Ty

where z is the percent by volume and
Hiy1/2r Miy1/2
o, - [1+ (£) Ly,.l)z ] | (2.27)
VB[l + Y

Other transport properties are found similarly. It should be emphasized that the

aforementioned ideal gas assumptions, and the assumptions of constant proper-
ties, are made here in order to simplify the analysis and reduce the computational
time. These assumptions can easily be discarded, and properties can be obtained
from appropriate tables. these, however, will render the numerical solution of
the developed model considerably more computational time consuming.
Thermodynamic properties of saturated water and steam, which are used in
the microscopic calculations, were calculated using empirical curvefits [59], and

|60]. These curvefits are summarized in Appendix A-1

2.4.3 Manipulation of Conservation Equations

It is convenient to combine Equations (2 1)-(2.6} into the following compact

conservative form:
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8(p0)  2(BE(U)) | 8(8G(0)) | 8(BHU)) a8V (U,TL))

ot + dx * dy + Oz - dr
8(8Va(U,UY))  8(3Va(U,U,)) | 3(BWL(U,Uy))
+ + +
oz 8z dy
HNBWL(T,U,))  8(BWs(U,U,))  B(3E (U, UL))
+ + +
Oy oy dz
A(BEL (U, U S(BES(U,U, . .
( 2; y) o SaE VD) L psy as. (2.28)
4 z

The above equation reduces to the ordinary Navier-Stokes equations form
when 3 =1 and & = (.

In the above equations U, F(U'), G(T), B (U), Vi(U,Us), v3(U,UT,), Va(U,U>),
WU, U), Wa(U,U,), Ws(U,U,), EA(U )

vectors are given by

i

g=1° (2.29)

Fith=1| " (2.30)

puv
2

P”pvi P (2.31)

(e +p)v
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Va(

pw
puw
) prw
pw? +p
(e +plw
L pgw

B8pD,
(A + 2u)u,
1y
HWg
(A + 2p)uus + povg + pwws + kT,

]
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BopDd, i

- 0 —
Avy

= u

Uv Uy) = ”Oy
ALy + VU,

A 0 4

- 0 -
Aw,
= 0
[P
Apw, + pwug
| 0 J

HUg
Ay
0
puvg + Avug
i 0 |

I BoDg,,
Hily
(A + 2p)vy
By
puty + (A + 2u)vvy + pwwy + kT,

L 6PD¢‘y
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(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)



Ws(U,U,) =

E1_1"3(6;5 U;) -

- w
Q(Uva): St

B
Avw, + pwu,
i 0 J
- O —
KWy
- 0
Alug

pUWg + AW,
! 0 d

- 0 -
0

)\vy
HUW, + ,\wvy
L 0 i

i 8pD ¢, 1
pu,
LE
(A + 2p)w,
pun, + pvv, + (A 4+ 2p)ww, + kT,

L BoDo, -

For packed bed porous medium,

-

4y
Il
I

0 -
ﬂﬁ2}% +pcﬁ3(u2 +"U2 +w2)l/2u
pB% % + pC 33 (u? + 02 + w?)t2y
p32E + pCB u? + 02 + w?)V 2w
0
0
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(2.38)

(2.39)

(2.40)

(2.41)

(2.42)
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For shell-and-tube porous medium

- 0 -
Bnzu(u® o2 + w?)1/2
- Bngu(u? + v? 4 w?)1/2
- ﬁnzw(ung’UQ +w'2)1/2

0
L 0 J

(2.43)

And finally

-

—3m
—~fAmu
—3mv
—3mw

—q"s
L 0

O,
I

(2.44)

2.5. Microscopic-Level Model

2.5.1 The Stagnant Film Model

The objective of the microscopic level model is to find m (or equivalently
m”), the condensation rate per unit volume, and ¢”, the local heat flux. Once
these two parameters are evaluated, they can be substituted into the macroscopic
system equations, rendering their solution pessible.

As mentioned earlier, the stagnant film model [45] will be used in the mi-
croscopic system. This classical model assumes that the gas-side heat and mass
transfer resistances are associated with a thin stagnant layer at the interface
between the gas and the condensate.

The coupled heat and mass transfer rates at the liquid-gas interface, in

general, can be written as [45]

ha(Ta —Ti) +m"hyg = ¢” (2.45)
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where T, the bulk gas temperature is obtained from the macroscopic system,
and T; is the vapor-condensate interface temperature. The heat transfer between

primary and secondary sides of the condenser can be represented as:

¢ =U(T; - T,) (2.46)

where 13, is the bulk temperature of the primary system, and U is the overall
heat transfer coeflicient, excluding the secondary-gas-side thermal resistance.
The parameters he and m”, according to the stagnant film model, are related

according to
"*‘Th”CP

h = , (2.47)

exp(—u%ﬁ) -1

where C' — P is the specific heat of the vapor-noncondensable mixture, and,

m' = —Kgln(l + Tn—_:"-"‘?) (2.48)

where hg and K are the gas side heat and mass transfer coefficients in the
limit of zero mass transfer, respectively, and m is the vapor mass fraction in the

bulk mixture as obtained from the macroscopic system equations according to
m=1-¢ (2.49)

Also, m;, the vapor mass fraction at the interphase, is related to the local vapor

partial pressure, and from there to the interphase temperature, according to:

— Pi 2.50
pi + (32)(p — p:) (230

v

Pi = Paat(T:) (2.51)
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where p; Is the vapor partial pressure at the interphase, and p is the bulk mixture
pressure obtained from the macroscopic system. Quantities M, and M, are the

molecular masses of the vapor and the noncondensable gas, respectively.

2.5.2 Heat and Mass Transfer Correlations

As mentioned earlier that, although the basic method for representing con-
densers as porous media is general in nature, the shell-and-tube condensers as
well as the packed bed condensers will be specifically considered in this work.
Since some of the parameters in the equations presented in the previous sec-
tions strongly depend on the condenser configuration, these parameters will be
presented for the above mentioned condensers. For the shell-and tube configu-

ration: .
1 1 1]

hp(Di/ Do) (DDED,- ) {D;E;_’){) ho

U

(2.52)

For the packed bed, the temperature profiles inside the solid packing material
should be known. this, in principle, requires the solution of transient packing
energy conservation equations. To simplify the analysis, however, it is assumed
that the packing is made of identical spheres, and that the temperature at the
center of the sphere is constant. Thus:
-1
U= [412 + hi:| (2.53)
Dy c

where k is the tube wall thermal conductivity in case of shell-and-tube and the
solid particle thermal conductivity in case of packed bed, D; is the inner tube
diameter (for shell-and-tube), and Dg is the outer diameters for both shell-and-
tube and packed bed, and k. is the tube-condensate film heat transfer coefficient,

and is obtained from the following correlations [45]:

4
Ny — [GTCPTC r/ _ heDy

—_— for shell-and-tube (2.54)
33.6NJa

c
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where
A D
Gr, — Br/:)g Dy p/‘o;)g 0 (2.55)
i
Ap=pc—py (2.56)
pr, = e (2.57)
TS‘KI -
Jo = 2eWsat = Tw) (2.58)

hig

In the above equations the subscript ¢ refers to the condensate and T,
represents the wall temperature. Equation (2.54) is also used here for packed
beds, for simplicity.

Finally, h, in Equation (2.52) is the primary side heat transfer coefficient

and can be evaluated using the Dittus-Boelter turbulent flow correlation [45]:
Nup = 0.023Re3®Prd®,  Pr > 0.5 (2.59)

where Nu,, He, and Pr, are the Nusselt, Reynolds, and Prandtl numbers for
the primary system, respectively.
The mass transfer coefficient, K¢ in Equation (2.48), can be evaluated using

the relation:

Kg = (pD12/Do)Nuy, (2.60)

where p is the vapor-gas mixture density and is assumed to follow ideal gas
relationship. The parameter ;5 is the vapor-noncondensable binary diffusion

coefficient. For air-water vapor, in SI units [45):

T )1.685 (2.61)

Dig = 1.97 x 103 (22) (=
12 X (p)(TU



where py = 1 atm, Ty = 250K.
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For forced convection over a cylinder (i.e., shell-and-tube), using analogy

between heat and mass transfer, Nu,, is found from {45]:

KGDO - Num - 03
plh2
OBRDTSOR o se 02, Re < 10,000
0.6710.25 eoc s e < 1U,
[1. + (0.4/5¢)067] (2.62)
0.62 0.5 ¢ .0.33
Nuy =03+ fe 7S5e ;
1+ (0_4/SC)0.67]0.25
Re 5/8 4/5
.{1 + (2—8:—2—666) } , Re > 10, 000. (2.63)
Likewise flow across a sphere (i.e., packed bed) [45]
Num = 2. +0.3Re?85:5% s> 06
Re < 150,000 (2.64)
Nuy, = 2.+ 0.4(ReSe)®®, Sc < 0.6
where
Re = pullo
7
Se = 2
D
Similarly, ke in Equation {2.47) can be evaluated using
Keg
hg=| — |Nup
¢ ( Do )
and Nuy for forced convection over a cylinder (i.e., shell-and-tube) [45]
0.6 0.5 0.33
Nup = 0.3 1 2Re Pgm 5z, RePr>02, Re < 10,000
Nar = L0314 0.62Re%5pr0 37
AT T [T (0.4 Pr)0ET0 2
Re 5/8+ 4/5
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For flow across a sphere (i.e., packed bed) [43]

Nup =2. 4+ 03Re™Pr%%  pr>06
Re < 150,000 (2.67)
Nup = 2. + 0.4{RePr)5, Pr <06
It has to be noted that since perfect gas relations are used in this research,
one can not include the latent heat of condensation kg, in Equation 2.44.
This problem can be corrected by evaluating the enciey associated with the
condensation rate per unit fluid area. Thus ¢’ in Equation 2.44 becomes:

"

g’ = yerd” ‘ (2.68)

Where ¢ is the internal energy per unit mass.
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CHAPTER 3

DISCRETIZATION OF THE GOVERNING

3.1. Introduction

The full Navier-Stokes equations, which were presented in the previ-
ous chapter with necessary modifications for porous media, consist of a set of
highly nonlinear and coupled partial differential equations. In order to solve the
full Navier-Stokes equations, a numerical procedure is needed. In the present
chapter, the full three dimensional Navier-Stokes equations, along with the non-
condensable mass conservation equation in a Cartesian coordinate system are
solved using an implicit factored scheme.

Also in the present chapter, the implicit factored scheme (IFS) is modi-
fied to include the porous medium, and heat and mass transfer terms. Moreover,
a novel method is presented to fully couple any number of mass conservation
equations to the full Navier-Stokes equations. The derivation of this method

will be presented at the end of this chapter.

3.2. General Remarks on Numerical Solution of Compressible Flow Equations

Unlike the case of incompressible flow, the compressible flow conserva-
tion equations include variable density and are coupled to temperature varia-
tions.

Although all fluids are compressible to some extent, the flow is said to

be compressible, for most practical purposes, if the change in density is 5% or
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more. Compressible flow is classified by the ratio of the local velocities to the

speed of sound, known as the Mach number:

1%
M = ?’” (3.1

where a is the local speed of sound of the flow, which, for an ideal gas, is given

by:

v

a= \/yYRT (3.2)

where v is the ratio of specific heats and R is the specific gas constant.

The flow is subsonic if the Mach number at every point in the flow is less
than unity. This type of flow regime is characterized by continuously varying
properties and smooth streamlines. When the local Mach number at some points
of the flow field-is less than unity and at other points is greater than unity the
flow is said to be transonic. The flow is classified as supersonic when the local
Mach number everywhere in the flow is greater than unity. The incompressible
flow equations are subsets of the compressible ones and can be derived from the
compressible equations when M — 0. This limit, in fact, means that the speed
of sound for incompressible flow is infinitely large. There are, in fact, drastic
mathematical and physical differences between supersonic and subsonic flows.

There are significant differences between the numerical solutions of com-
pressible and incompressible flow equations. In the case of incompressible flow,
the continuity equation includes a constant density which does not link with
the pressure, as it does in the case of compressible flow. In addition, in the
case of incompressible flow the energy equation is not coupled to the continuity
and momentum equations, and can be solved if the velocity field is established
by the continuity and the momentum equations; this is due to the absence of

the equations of state. Also, for the same reason the pressure appears in the
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momentum equations as an independent variable, and this calls for a special
treatment of the pressure. The unsteady compressible flow equations are, in
fact a hyperbolic-parabolic set, whereas, the unsteady incompressible low equa-
tions are an elliptic-parabolic set of equations. As a result, different numerical
schemes are required for each type of these equations. Approximate incompress-
ible solutions can of course be obtained from compressible flow schemes when
using very low Mach numbers. At low Mach numbers, however, the coupling
of the energy with the continuity and momentum equations becomes very weak
and the convergence to the accurate solution will be more difficult [47].

Explicit and implicit finite difference schemes are both available to solve
compressible Navier-Stokes equations. The choice between explicit and implicit
scheines, however, depends on many considerations. Explicit schemes, compared
with implicit ones, are easy to implement, but they have stability limitations
which make their implementation sometimes prohibitive for certain applications.
On the other hand, implicit-schemes are harder to implement and require ex-
tensive mathematical work because the implicit terms involve complex matrix
manipulations; this complexity is increased when implicit boundary conditions
are implemented. What makes implicit schemes attractive is that their stability
conditions are not as stringent as the expliclit ones. In particular when steady
state solutions are needed, implicit schemes are usually recommended because
their time increments can be increased close to the stability limit and the steady
state solution is thus reached faster.

Because of the complexity of the governing equations discussed in the
previous chapter, which is due to the presence of the extra porous-media and
condensation terms obtained from the microscopic system and the repeated iter-
ations between the macroscopic and microscopic level calculations, and because

of the absence of similar experience in the open literature, it was decided to use
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an efficient implicit compressible scheme, and improve it to include the above
mentioned extra terms. The implicit factored scheme (IFS) |#-] was selected for
this purpose. The IFS for the compressible Navier-Stokes equations was devel-
oped in 1978 by Beam and Warming [48]. This scheme, however, belongs to the
family of the ADI schemes developed earlier by Lindemuth and Kileen [50] and
McDonald and Briley [51].

Thus, in the forthcoming subsection, a modified IFS scheme is devel-
oped and discussed [48]. This scheme is based on the alternating-direction-
implicit (ADI) method [49]. The main advantage of this method is its ability
to reduce the multidimensional system of equations down to a one dimensional
system of equations. The introduction of the ADI method is the most significant

efficiency achievement for the implicit schemes [48].

3.3. Development of the Moditied IFS Scheme

The three-dimensional compressible conservation Equation (2.28) is
rewritten here by replacing the vapor density p, with the mixture density p, and
leaving out the noncondensable conservation equation. This is done in order to
reduce the number of equations to five, for which the mathematical operations
leading to the scheme development are relatively straightforward. The coupling
of the noncondensable conservation equation to this system will be discussed

later in this chapter.
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(80) | BF(W))  o(3G(0)) L ABHU)) _ 2(BN(T,Uy))
8t oz 8y dz N Az

8(8Va(U,U,)) N ABVa(U, U,)) N ;AW (U, U,))
or dzx dy

N B(AWL(U,U,))  8(aWa(U,U,))  a(BEL(T,U,))
+ + :
Oy Ay &z

—

v B(ﬁgz(ﬁ,b?y)) + 3(5}—'?3(61 U2))
Az dz

+ L6+ @6 (3.3)
Parameters in the above equation were discussed in the previous chapter. Beam
and Warming [48] used the following implicit time marching scheme

Apin _ OAL 8Aﬁ"+ At a(in+ T
147 8t 14++ &t 1+7

+0 ((9 - % - T) (A1) + (At)3). (3.4)

A[j’ﬂ“"l

In the above scheme AU™ = [’jn—i—}_ — U™, and proper choice of the
parameters # and 7 leads to many explicit and implicit schemes as summarized
in Table 3.1. The three-point-backward implicit scheme, for which 7 = 1 and

f = % is selected for implementation in this thesis.

Table 3.1.Some Available Schemes for Different 7 and 6.

T 6 Scheme Truncation Error
0 1 Euler, tmplicit O({At)?)

0 |0 Euler, explicit 0((A1)?)

0 % Trapezoidal, implicit O((At)3)
—% 0 Leapfrog, explicit O((At)3)

1 3 | 3-point-backward, implicit O((At)?)
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After expanding the time derivatives, and some simple algebraic ma-

nipulations, Equation (3.3) becomes;

aU _ 18(8F) 18(8¢) 10(3H) | 18(3V))

at 3 oz 3 oy 3 Oz 3 or

10(8Ve) 10(8Vs)  18(8W1)  10(3Ws)
3 Oz 8 oz 2 dy g Oy

+18(,3“7’3)+13(ﬁ151) 19(8E2)  13(8Fs)
8 9y 8 9z 3 Oz 3 0z

1. U ag
) b— ——. .
+ 3 +ﬁQ 3 9t (3.5)

Combining Equations (3.4) and (3.5) results in:

Agimel _ 04t (11 _OA(BF)  AA(8G) 0A(BH) | A(BVY)
S 1+7 8 oz Jy - 2z T az
N A(8V3) N 3AI(I3V3) 4 BA(BW)) BA(5W2) N IA(BW3)
dx Oz oy 3y oy
SA(BEL) OA(3FE3) BA(3Es) .88
y 2R0E) | 0R0F) | OBUBS) | ALs+ags - A( dtm }
At [1[_8(8F) _0(8G) o(aH)  o(avh)
1+ +71| 43 oz Ay Dz Oz
B(8Va) | B(BVa)  B(BW1)  8(3Wa) | 8(BWa)
+ dzx + Ox + oy t dy ¢ dy
+3(551) +5(ﬁE2) _I_a(ﬁES) +Eé+@6}}
3z dz itz
T Apn-l _1 2 3
+ 1+ AU +OK9 5 T)(At) + (At) } (3.6)

Dropping the error terms and assuming 3 is a constant, algebraic manipulation

of Equation (3.6) leads to:

At 8 L L
AT = l-l-T{ﬂl:B:r( _AFT 4 AV, T+ AV "4 AV )



47

a " o . ' . ‘
Foo(-AGT AW, AW, + AW )
Y

o vt ~'n - 'n ~'n
+5;(—Affn+AE1 +AFs + AFE;5 )}

+‘ At ]. 6( ﬁ’n+‘?’n+f’n+ﬁ}n)
1+7 | 3\0z L 2 3
3 —afn ’ﬂ -.'n 4"?’!
+ o~ (-G T+ W, +W2 +W3 )
dy
+ a( ﬁ’"+§ln+ﬁ’"+§‘n) + AT™!
dz ! “2 3 1+7
gAt /1 At 1 . -
ZA(L™S ng — | Z(L™s ng
B (harern) 1 2 ()

(3.7)

where ' — 8F, V| = 8V, V) = aVh, Vy = Vs, & — BG, W, — AW,
W?zr = BWa, W'SI = W3,

H' =88, B\ = 8K\, Ey = 8E), Es = 3Fa.

The flux vector increments (AF’, Afl’, AG, AW}'Q’, AH’, ﬂ\ggl) are non-
linear functions of the conserved variables U and can be linearized with respect

to the conserved variable U using the Taylor series expansion method. As an

example: B
Frtl = fFmoy (a‘i’)naﬁﬂ +0((At)?) (3.8)
ou
This results in:
AF™ = A"AO™ + 0((A)?) (3.9)

where

AF™ = g+l _ i'n (3.10)



Also one can write:

(2~ ) a0+ Zmaoy roqao
Similarly
AG™ = B"AU™ + 0((At)?)
AW, " = (By = Ry, )"AU” + Z(RBAT)" + O((A1))
AH™=CG"AT™ + 0((A1)?)
and

n

. . .
AEs " = (Bs = Ry, )"AU" 1+ —=(RsA0)" + O((A)7)

The Jacobians in the above derivations are defined as follows:

An:(a_ﬁi)" Bn_(aéf)" Cn_(aﬁ')”
= ot J ' = 8tf J ' = ot

S —
n_(avl)n Pn:(3W2 )n
=1 o J 1 T2 ot /)
s f
n (avl )”
_.1 3U’I ¥

R, dR, OR,
— — = — R .
El;z 6:17 1 E2y By ’
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(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

! N T
Note that the remaining flux vector increments {AVy; ,AVy, AW,

! . .
AWj3, AE1 ,AE)) involve cross derivative, and are to be treated explicitly. This

approximation, however, does not affect the stability of the numerical schemes

[48].
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Also the porous increment term AL™ and the condensation increment

term AQ™ can be written as:

AL™ = (%) AU™ + O((At)?) = S*TAU™ + 0((At)?) (3.16)
AQ™ = (g_g) AU™ + O((At)%) = T"AT™ + O((A1)%) (3.17)

where §™ and T are the Jacobian matrices (%)n and (g%)n, respectively.

It has been found in this study that it is very important to solve AL
implicitly otherwise there will be stability problems. Analytical solutions of
the Jacobian matrices §™ for packed bed and shell-and-tube porous media are
presented in this chapter. On the other hand, it is very difficult to find an
analytical solution of the Jacobian matrix T". This Jacobian, however, can be
solved numerically or can be solved explicitly the same way the cross derivative
terms are trtlaated. Moreover, it has heen found also in this study that this term
can he solved explicitly without affecting the stability of the system and can
thus be replaced in Equation (3.7) with AQ™*

Substituting Equations (3.9), (3.10), (3.11), (3.12), (3.13), (3.14), (3.15),
and (3.16) into Equation (3.7}, the result may be written as:

oAt [ 8 (R, 8
I 4 e | —(A-P )" — ——"— + —(B — Py+Ra,)"
O*(Ry)" | @ n_ 9%(R)" -
— = (o — S = ——— — §"§| AU
o2 T oy ST Leths ) 8.2 =
8AL a v . g ot ot
= " | (AVh + AV )T 4 (AW + AW )"
[3(1—|—T)|i6£c( 2 3) By( 1 3)

a - L -
+—(AE] + A r (AQ)"_HS}
Z
At 8 ., Ny L ! a3 . "t ! s o
b2 P iV W A ) (-Gt W AWy + W
[3(1+T)[8:c( 1 2 3 ) ay( 1 2 3)



b - ~ ! o ! . ~ —+
+—(—H t+ E1 +E> +E3)*+L" + Q"

A ™! 3.19
dZ + 1 "‘T ( )

The solution of the above equation is very expensive computationally
because the produced matrix that needs to be inverted at every time step is
very large and involves all the three dimensions (z,y, z). Moreover, in the case
of three dimensions there are five equations to be solved at every computational
node and this makes the size of the matrix (N, x N, x N, x 5)2, where N, Ny,
and N, are the number of the interval grid points on the z, y, and z directions,
respectively. However, Equation (3.19) can be factorized to give the following
approximate form

oAt [ 2 8*(R,)"
(L oy st mrzmar - 50

oAt [ @ n_ O(By)"
{re i e - e - 585}

AL d 8(R3)™ .
el —{C — R3,)" AU™
{_+,5(1+T|: (€= Byt Ra)” = =503 ”
- ﬁ%—)ﬁnﬂff" = RH Sof Equation(3.19). (3.20)

Comparing (3.20) and {3.19) shows that (3.20) contains the following
additional terms on the LHS

oAt \/ 8 %R, )"
((1+r))( (A= P+ Ry,)" - am% )

a n 82(-&2)'” n
: (5;(2—22+E2y) - W_L 6

oAt \°/ 9 . 9% (yR)"
i(m) (EE(A—EJ-FB.U:) —T)

g 8*(R3)™
P3+ R3,)" — ——— - L"$
(32 (€= Py + Ry.)" 922

z
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oAt \3/ & . OFR)"
*(m) (am@ Byt Ba) _a—)

9 n_ 2(8)"
: (@(.ﬁ — Py +Ry,)" — gt

- (%(.c:— Pat Ra)" — m) (3.21)

az2

It is obvious that these additional terms are of the order (At)? and have

no effect on the accuracy of the solution because Equation (3.19} is also of order
(At)?

Equation (3.20) can be implemented as a three-stage scheme at each

time step
PAL [ 8 *(Ry)"  ow e
{I+§H:7[M@4 P, +R,)" -jﬁy——gﬂ}au
0AL [ 8 nel, 0 A o

8 . . .
+5jAEi+AEQW4+(AQP_%J

At

* 401+ 71)

8
[%(W+n+%+%)

o - S, o - — -
+—4 @+ﬂq+WyHﬁ)+5%—Hqiﬁ+EQh%P+L%+Q%
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ortl=gn p AU (3.25)

It can be seen from Equations (3.22), (3.23), and (3.24) that the size
of the matrix to be inverted in each direction has decreased to 5N 3, 5N§, and
5N2 in the z,y , and z directions, respectively. The procedure to solve the
above equations, however, is to solve first Equation (3.22) by sweeping in the
z-direction. Once the z-direction is covered totally and the increment AU™ is
evaluated, equation {3.23) is solved by sweeping in the y-direction; the same pro-
cedure is subsequently done for the z-direction. The same procedure is repeated
again until the steady state solution is reached.

It has to be mentioned once again that in this study the term %?— is
neglected because 3 is assumed to be a function of space only. However, when
time dependent two-phase flow analysis is required with the condensate porosity
varying with time, this term can easily be considered. Also, 3 can be assumed to
be a function of time when the particles in the domain of interest are in motion,
or undergo volume change.

When second order central differences are implemented on the implicit
terms of Equations (3.22), (3.23), and (3.24), the produced system is a block

tridiagonal system which can be solved using an economical way such as the

block tridiagonal Thomas algorithm.

3.4. Artificial Dissipation

The addition of artificial dissipation terms to central difference schemes
is very important for the stability of central differencing numerical schemes.
They are added to eliminate the high frequencies generated by odd-even un-

coupling grid points typical of central differencing and nonlinear effects such



as shocks. The Navier-Stokes equations provide an inherent dissipation due to
the presence of viscous terms in them but this dissipation, unfortunately, is not
enough to ensure stability at high Reynolds number.

In order to extend the stability range of the used scheme, two numerical
dissipation terms are added. A second order implicit dissipation D; [52] is

implemented according to

B, 82AU
Di - —Ei(AZ')Z . (326)
2
A fourth-order explicit dissipative term [48] is also implemented:
» o*U
D.= —clAz) — (3.27)
dx

Similar dissipation terms apply to the other coordinates.
According to a linear Von Neumann stability analysis, €. and ¢; should

be in the following range [52!:

1
0<e. € g when 7 =0 (3.28)
0<e, < t}‘” when 7 # 0 (3.29)

The stability limit when the implicit dissipation term is included is:
0 <8, <1+ 4e; (3.30)

After the insertion of the dissipation terms, Equations (3.22), {3 23).

and (3.24) can be written as

At [ 8 2R , 82 .
" | = — n__ 2 MU Qs e —_ SALTF
{L+ A7) [BI(A P,+R,.) 522 576 ~ ei(Az)" 5=

gty

] (3.31)

= RHS5(3.22) —e.(Az)?
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(3.33)

The Jacobian matrices in the above equations, when assuming perfect

gas relations (see section 2.4.2); become:

r 0 1 0
(7 —3)u? + g0 (3 —7)u (1 =)o
><(-v2 + w?)
A= —uv —v u
—uw w ¢
—veu + (y — 1) %-’-Q;—"’) (1—r)uw
L u(u? + 0% +w?)  (3u? + 0% w?)
I 0 0 1
—uv v u
(v-3)? + 050 (1 - (3 —)v
(u? + w?)
B =
—vw 0 w
e — ye 4 A=)
- (1 —75)uv ot
+{y = 1)v (302 + u? + w?)
L (2% +v? +w?)

0 0
I-7jw (v-1)
0 0
(1—~)uw Yu
(3.34)
0 0 7
0 0
(-mw (-1
v 0
(1— ~)ow Fu

(3.33)



|

o

0 0 0 1 0
—uw w 0 u ]
—vw 0 W v 0
(v — 3)w? (1=7)u  (1—) (3—17) (v -
(v—1)
— =
(u2 4—-1}2)
- (I=uw (1—ypw 240520 yw
+(y ~ Dw (3w? +u? + 0?)
L(u? + 0% + w?)
[ t] ( 0 0 87
A4+2p)u A2} 0 0 0
P P
_BY 0 ) 0 0
3 P
— g 0 0 £ 0
o o
= E oy u? kv k Y w k
—A+22-F)% v w-£)E (k-E)Y Sk
_l( _ i) _kyu : L)w
P Ch Co/op Culop
(v? + w?)
k e
L TG, p? J
r 0 0 0 0
_uu 8 0 0
e P
—(A+2p)2 0 22 0
o “
= I 0 0 p
Eyu u k k
—At2u-)% k-F)E (+-E)E (w-4)Y
E oy (uZ40®)
_(P' _ c_v) u pv
k e
L T Cyp?

55

(3.37)

r oo o O @

)



F

-P\+R,, =

_£2 + E?y -

<o vk @ <

I
|
S
+
o
=
© (g

56

N e T e [ e i

(3.39)

(3.41)



In the case of packed beds the Jacobian S becomes

I 0 0
—ul gt H 0 (2u?
u(u? + v? +v? + w?)
‘l-w“?)l/2 {u? + 0?2
+w2)w~1/2
— sy _ o2 C 32w
. w(u? + v (w2 § 2
= +w2)1/2 _+,w2)-1/2
— f,;” —Cp%w CB32uw
(u2 —l—v2 (u2 + p?
Fw?)L/2 pw?)=1/2
I 0 0

0
C32%uv(u?+

02 +‘w2)—1/2

2+ 0B (u?
+2v% + w?)
-(u2 + v?
+w2)—1/2
C 3% vw(u?
to? + w?)"1/2

0
0
0 0
(A +2p), 0
(A + 24 (g’%)z%
—).%
(3.42)
0 07
Ca%uw(u?+ 0
n2 +w2)—1/2
CB%vw 0
(u? 4+ 0?2
+w2)--1/2
84 cg2(u? 0
v? 4 2w?)
% (u? + v?
0 0]
(3.43)

Whereas in the case of shell-and-tube condenser the Jacobian § becomes
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In the shell-and-tube Jacobian, §, the parameters m,n, ¢, b, and ¢ are
defined as

m = pu,n = pv,q = pw

_2apDo( P83 \'[1-3 )
9= uP (P—DO) (1—.3¢ (3.45)

Parameter a takes the values 0.619 or 1.156 and » takes the values 0.198 or

and

0.2647 depending on the Reynolds number (see Equation {2.14)).

3.5. Boundary Conditions

Finite difference schemes are usually developed to calculate the interior
grid points in the domain of interest. However, exterior grid points are linked to
interior grid points via boundary conditions and special relations. It is, however,
very importént to specify proper boundary conditions and to provide proper
special relations to develop a well posed system. When the solution is sought
through the finite difference method, information is carried from one point to
the neighboring points and the boundary conditions influence their neighboring
points until the whole domain is affected. In fact, in principle there exist in-
finite numbers of solutions, each one defined by a set of initial and boundary
conditions; any change in these conditions will produce a new solution. The
global accuracy and stability can, also, be influenced by the choice of boundary
conditions.

Explicit schemes generally use explicit boundary conditions, on the
other hand, implicit schemes can use explicit as well as implicit boundary con-
ditions. Explicit boundary conditions are easy to implement and can be readily

changed when needed. However, when explicit boundary conditions are used
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with implicit schemes, the stability of the scheme can be adversely affected. In
this study implicit boundary conditions are implemented.

A great number of boundary condition models have been suggested
in the open literature during the past two decades. Nonreflecting boundary
conditions were developed by many researchers to prevent spurious, nonphysi-
cal reflections at inflow and outflow boundaries. This method can increase the
accuracy and the computational efficiency because the computational domain
can be made much smaller, as indicated by (Giles [54], Engquist and Majda
[55] and Saxer [56]). This method is developed, however, by linearizing the
steady and unsteady equations about the far-field conditions; the resuiting sys-
tem is then solved assuming a generalized wave form as suggested by Verhoff
and Stookesberry [57] and Verhoff, Stookesberry, and Agrawal [58].

Correct implementation of necessary boundary conditions depends on
the nature of the flow. In this study, however, the flow is assumed subsonic, and
two types of boundary conditions are used.
¢ Boundary condition 1

The inlet density and velocity are specified, while the pressure is ex-
trapolated from the interior. However, at the outlet the pressure is specified and
all other variables are extrapolated from the interior.

e Boundary condition 2

At the inlet, the pressure and density are specified and the velocity
is extrapolated from the interior, while at the outlet the pressure is specified
and other variables are extrapolated from the interior. The outlet boundary
condition 2 is thus the same as the outlet boundary condition 1. Both boundary
conditions are implemented implicitly and successful results are obtained. When
the central difference approximation is applied on Equations (3.31), (3.32), and
(3.33}, it can be seen that the Jacobians 4, — P, + R,,, and R, in the z-sweep
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direction, B — P, + R,,, and sz in the y-sweep direction and C,-P, + Rj,,
and R4, in the z-sweep are not defined at the boundaries. In order to solve this
scheme using implicit boundary conditions, these Jacobians must be defined at
the boundaries.

In this research, it is also assumed that the flow enters and leaves the
system through certain portions of the z-y plane at z = 0 andA z = Hyp re-
spectively, where H, 1s the system length. It is, thus necessary when solving
Equation (3.31) to find the Jacobians A, ~P, + R,,,and R; at i = 1 and i = ¢,
where i is the grid point nurnber in the z-direction. Inlet boundary condition 1

s implemented as follows:

At the inlet

p = constant = Ap=0.

u© = constant —=> Af{pu) = 0

v=20 = Apv) =0

w =0 == Apw) = 0. (3.46)

The pressure is extrapolated from the interior, therefore

P15,k — P2,k (3.47)

where, consistent with the assumption of ideal gas with constant specific heats:

p={(v-1) (e - %(puz +pv® + pwz)). (3.48)

Combining Equations (3.47) and (3.48), there results:

1
Aey k= (Aeg’j,k _ EA(qu + pv2 + p’wz)z,j,k).



It can be easily shown that

Alpu® + pv? + pw?)a gk = 2(ul(pu) + vA(pv) + wA{pw))a,;

therfore:

— (u® +v® + w?y  xApa ik

Aeyjk = Aegjx — (ul(pu) +vA(pv) + wA(pw))zjj!k

L1
2

(u2 + v2 + ’w2)2,j,kAp2,j’k.

(3.49)

When applying Equations (3.46) and (3.49) at the inlet the inlet Jacobians A,

and R, may be written, when the j and %k indices for simplicity are suppressed,

as:

i 0
;(r—1)
(w2 + 0% +w?),
0
0
F7u1
L (u? + 0%+ w?)y

e
[

—(v — 1)uy

0

0 0 0 7
—~(y =~ 1wy —(y-Dw? (v-1)
0 0 0
0 0 0
—YuU1vg —yuwg Yuy
(3.50)
0 ] 0 7
] ] 0
0 0 0 451
0 0 0 (3. )
k 1k k
TImc, Y2 Tap W Lic
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The outlet boundary conditions 1 and 2 are identical and are developed

as follows. At the outlet

P4,k — constant

Pe 5.k — P14,k

Ugjk = Ui—1,5k == (pw)esn = (pu)e—1 &

Vejk = Ve-Lik == (pv)ege = (Pv)e-15k

Wegk = Wi-15k == (pw)ejk = (pw)e—1,jk. (3.52)

where £ is the last grid point in the z-direction. Using ideal gas assumption and

dropping indecis j and k for simplicity, one can write:
1, 2 2
pe= (v —1)(es — §(pu + pv° + pw®)y) = constant
Now, since Apy = 0., one gets:

1
Aeg = -Q-A(pu2 + pv? + pw?),.

Using this equation, after some simple algebraic manipulations, it can be shown

that:

Act + (ul(pu) + vA(pv) + wA(pw))ey

1
—E(u2 +v? 4+ wz)g_lApg_l. (3.53)

When applying Equations (3.52) and (3.53) at the outlet, the Jacobians

Ay and R, for the outlet grids becomes:
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Hy = Tue—y
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1 0 0.-
(3 —y)ug 0 0 0
+(y — ugw
V-1 ug_1 0 0
we_y 0 Up—1 0
pfl + 27 ug_1vg—1 upg—1we—1 O
(3‘“’2 + 'U2 + ’wz)f_l
+’Y“%_1
{3.54)
0 0 0 07
{(A4-2u) 0 0 0
Pe-1
0 Pe1 0 0
0 0 B 0
Pe—1
D) - g - )i o
Ue—1 k k
Pe-1 + pg_l()uve—l +P!—lc £—1 0
k
+p£—lcu i1
(3.55)

The inlet boundary condition 2 can be treated in a similar way and will

not be discussed here. Also, the boundary conditions of the explicit portion of

the scheme are straightforward and will not be presented.
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Non-slip boundary conditions are assumed at the wall, and the velocities
are set to Zero. The wall is also assumed to be adiabatic; the pressure and density

are extrapolated from the interior assuming that

a a
P _y, Lo,
an dn
and the adiabatic wall condition requires that i: — 0, where n is a vector normal

‘r

to the wall.

The implicit wall boundary conditions implementation is straightfor-

ward and will not be discussed here.

3.6. Coupling of the Noncondensable Mass Conservation Equation to the

Implicit Factored Scheme

In the previous sections, an implicit factored scheme was modified to
include the porous medium and heat and mass transfer source terms. The de-
veloped scheme, however, applies only for one species. This study as mentioned
earlier deals with vapor and noncondensable gases assuming that the mixture
is compressible. Due to the condensation, the partial density of the noncon-
densable varies in the condenser. The change in the density of noncondensable
might be very large depending on the condensation process, and necessitates
the coupling of the noncondensable mass conservation equation to the system of
conservation equations.

Recall that when the implicit factored scheme was developed for one

species was considered, the conservative variables were

p
pu
U= pu
pw

e
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where p is the mixture density.

Initially, the following two methods were considered for coupling the
noncondensable conservation equation to the equations for the above five vari-
ables,

1. Solve the mixture equations to evaluate the mixture variables, and then solve
the noncondensable equations separately and advance the time to the next
step to evaluate new variables.

2. Try to couple the noncondensable equation with the implicit factor scheme

by having the conservative variables

Py
o
pv
pw
€

Th
[l

L pg
where, in this case, p, is the vapor density, p is the mixture density, e is the
mixture energy and p, is the noncondensable density.

After implementing the first method, however, it was found that the
time step became very stringent and the convergence to steady state solution
took a long time. With respect to the second approach, unfortunately it does
not seem possible to evaluate the Jacobians, presented earlier in this chapter,
using direct differentiation when the species equation of the noncondensable is
included in the compact conservative form.

In view of the above mentioned problem, a novel method was explored in
which the noncondensable mass conservation equation is included in the implicit
factored scheme. Once the latter method was implemented it was found that the
time step was much less stringent than that of the aforementioned first method.

This novel method is now presented.
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Although the following derivation is applicable to any number of species
equations, however, only one species equation is considered here for convenience.
Consider having continuity, momentum, and energy equations for the
steam and the noncondensable separately. Then the conservative variables be-

come

Uy = | pyv (3.56)

and
Pg
Ug = | pgv (3.57)
Pgtt
L eg

where I, and U ¢ are the conservative vectors for the vapor and the noncondens-
able cas, respectively.

If the same procedure that was discussed in the previous sections to
derive the implicit factored scheme is followed separately for each species, one
will have equations similar to Equations (3.31), (3.32) and (3.33). Thus, from
Equation (3.31):

e Steam

BQ(E'UI)R £3 82 *
ST S albal G }Mv
. 1907 :
= RHS (3.22) — e (Az)*— " (3 5%)



and

e Noncondensable
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(3.59)

(3.60)

(3.61)

Note that the last term has been included in the right hand side of Equation

(3.59) because the noncondensable does not condense. The Jacobians for steam

(Equation (3.58)) are given below.

0

Fpy

—uvy

—uw

_%(ev + pv)

8p,,

1

2u+ga7%‘::

0 0 0

) 0 0

0 u 0
u% u%% u-i-u:—j{—’

(3.62)
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(3.63)

(3.64)
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(3.65)

(3.66)
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(3.67)

R, and R 3 are

similarto A,, B, C,, R, R 5, and R, 4, respectively except that the subscript

v is replaced by g everywhere. The Jacobians (=P, + R,15), (—Pu2 + Ryay),
(_£u3 + Evﬂ.z)‘ (_Egl + Egla:)? (_£g2 + E-g:Zy)r (_:E-g3 + EgSz) can be derived

similarly.

The above Jacobians are valid for any arbitrary equation of state of the

form

p—= P(P, E)'

In this work, however, it is assumed that the steam and the noncon-

densable gas are perfect gases. The equations of state for the steam and the

noncondensable gas are as follows.

e Steam

1
o= (o = 1) (e = =t 4+ 48))
v

)(ev—

1

T, = (
? PuCou

1
2py

(m? 4 n2 + q%:))



e Gas

1 .
pg = (vg— 1)(89— éﬂp—(mg+né+qg))
g

and

1 1 .
T, = ( e, — —(m2+n?+4¢2) ).
¢ pgClug (g Zpg( ¢ 9 g)

Also, the partial derivatives in the above Jacobians are as follows:

Opy  (v—1), 2 o 2
5oy~ 2 (u® + v” + w?)
Opy
=—{y—-1
. (v — Du
Opy
= —{v -1
o (v = Do
dpy
=—(7 - 1w
Pa. (v—1)
dpy,
= -1
de, (v )
BTU €y, 1 2 2 2
- = = + u'+v tw
319», P?;va Cv'upv ( )
oT,, U
8mvz vapu
Ty, v
anv, Cuupu
or,, v
3‘11); Coupy
aTy, N 1
aeu2 B Cuupv

Similar expressions can be derived for the noncondensable gas
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Now, let us redefine Am,,An,, Aq,, Ae,, Am g, Ang, Aq,. and Aeg in

terms of Am, An, and Agq.

Am, = A(&m)

P
v 1
Amy = ZAm + ZAp, + pomA(2). (3.68)
p p p
But
P
AG) = A ) 1 SAp =0
1 1
As a result: A(=) = —=Ap. (3.69)
p p

Substitute Equation (3.69) into Equation (3.68), after some algebraic manipu-
lation

Amy, — p—guApU + 2 Am — &u/_\pg. (3.70)
p p p

Similarly, it can be shown that:

An, = &’L’Apv + ZAn - p—vapg. (3.71)
p p p
Agq, = g—gwApv + p—UAqU — p—vapg " (3.72)
p p p
Aey, = f,-g—e/'_\.;::u + 22 Ae - Eg—-e/_"‘.p_‘;. (3.73)
p p p

where €, = Epie. Similarly:

Amg = p—vuﬁlpg + 29 Am — E-g-uApv (3.74)
p p p

Ang = p—vv&pg +29An - &vApU (3.75)
p p p

Agy = &wﬁpg + @-Aq - ng/_\pv (3.76)
p p p
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Aeg = E—;—e‘&pg Ty E—g-eﬂpg (3.77)
p p P

Equations {3.58) and {3.59) are in fact representing continuity, = mo-
mentum, ¥ momentum, z momentum, and energy equations for the steam and
the noncondensable which makes a system of ten equations. The aim is to re-
duce this system to six equations representing continuity equation for the steam,
mixture r-momentum, mixture y-momentum, mixture z-momentum, mixture
energy and noncondensable continuity equations.

When Equations (3.70), (3.71), (3.72) and (3.73) are substituted into
Equation (3.58), and Equations (3.74), (3.75), (3.76) and (3.77) are substituted
into Equation (3.59), one will have a system of ten equations, and six unknowns
assuming that the equations of state are available. These unknowns are p, m,
n, g, ¢ and pg. However, the number of equations can be reduced to six by
adding the z-momentum equation of the steam to that of the gas, y-momentum
equation of the steam to that of the gas, z-momentum equation of the steam to
that of the gas and the energy equation of the steam to that of the gas. Finally
one will get the following »ystem:

e Continuity equation for the steam
e Mixture z-momentum
o Mixture y-momentum
e Mixture z-momentum
o Mixture energy equation
¢ Continuity equation of the gas.
After tedious algebraic manipulations, the Jacobian A may be written

as:
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Similar procedure can be followed to evaluate the Jacobians R, ., P,
and S. Keeping in mind that u, — %p, ky= B2k, pg= Epi,u,, and kg = —ik
Repeating the same procedure for Equations (3.32) and (3.33}, the Ja-

cobians B, P, ﬂzy, C4, Py and R4, can be derived
In the Jacobian A, the aij,’s and aijg are the elements of the 5 x 3

Jacobians A, and A respectively. The above Jacobians are, however, simplified
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when assuming perfect gas relations. For the sake of completeness the Jacobians

when assuming perfect gas relations for the steam and the gas are presented

helow.
_ oy oy b -
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For a shell-and-tube:
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~ 3.7. Transformation of the Governing Macroscopic Equations

In numerical modeling flow through open channels, fine mesh points
are required near the walls, where the important details of the boundary layers
will be lost with a coarse mesh system. In this work, in order to have grid
points clustered near the wall where mesh refinement is sometimes necessary,
the transformation due to Roberts [53] is used. This transformation is formally
represented here as {z,y,2) — (£,7,¢). As an example, in a one dimensional
transformation, the y-direction transformation becomes

In{[e + (y(2y + 1)/k) — 2v] — 2v/(e ~ (y(2y + 1)/h) + 271}
Inf(e + 1)/{a - 1)]

n=v+{1-7)
(3.87)

2a(1= 1Ry +1) 3.85)

h{e? — (y(27 +1)/h — 27)*) In((e + 1)/ (e — 1))

~Where h is the channel width in y direction, and subseript y represents derivative

ly —

with respect to y. When 4 = 0 the mesh is refined near y = h, where h is the
condenser width, and when v = 1/2 the mesh refined equally near y = 0 and
y = h. The stretching parameter a is, however, related to the non-dimensional

boundary layer thickness by

s\ 5
a:‘(l—g) 0<};<1 ()

Similar expressions for £, ¢, £; and (, are used, where § is the boundary layer
thickness.

Viviand [63] and Vinokur {65] have shown that in the Navier Stokes
equations can be put into the following strong conservation form. Equation

(2.26), after the transformation becomes:

(

30 3F¢, + 3Gey + pHE,
T)t + 7
£
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8Fn, + 8Gny, + ﬁﬁnz) . (;31?“'51. +8GC, + 81—}’(2)
7 7
7 q

B(V) + Vy + Va)ez + B(W1 + Wy + W3)é, + B(E1 + Ez + E3)é,
v
£

J

i (ﬁ(‘?l + Vo + Va)ne + B(W1 + Wo + W3)y, + 8(E2 + E3)%)
TI

L (Bt Vot Va)e + B+ W + Wa)y + B(Ey + Es + Eg)gz)
J
¢
LE+ @6
+ +Q (3.90)

Where J is the Jacobian of the transformation

. b & L
bl y
s=26n0 _ |0 o (3.91)

B0 I r

In this work since one dimensional stretching functions are used the above Ja-

cobian reduces to

&z 0 0
J=[0 5, 0 (3.92)
0 0 ¢

Equation (3.90) can be written as

0+ Foi+Gp+ He= (Vi + W1 + E1)e
+ (Vo + Wa + Ea)y + (V3 + W3+ Ea);

+ (L + Q)8 (3.93)
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Where
- 30 . A ants 3CH
J J J J
- BEVL . BEW, .  BEE, . dnVy
"l 1 y 1 — 7V2 - )
J J J
. BnWa - gnkEs - 3¢V - 5(‘”1?3
Wo 2= ’ V3 - ’ 3=
J J J J
~ BCEs - L . Q
Ey—= — L =—, d = = 3.94
3 . 70 en Q 7 ( )

U, F, G, H, and L are the same as defined before, however, the re-

maining vectors are defined as follows:

- pD(ﬁ’ -
(A + 2p)ue
— _ pvf
! ¢ 3.95
1 Sr pwe ( )
(A + 2p)uug + povy + pwwe + kT
L pD g B

_ 0 -
Avg

Vo =y “gﬂ (3.96)

ALVy + pOU,
L 0 J
- 0 -
Awe
—~ 0
Vy=¢, p (3.97)
Apwe + pwug
| 0 y
- 0 -

Hve
= Aug
0

uuve + Avug
L 0 J

(3.98)
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puwe + Awug
i 0

= 0 ' —

0
Lin
Moy (3.102)
prwy + Awvy
| 0
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pD ¢ T
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Ey = e : :

3 Cz (A + Qﬂ)wg (3 103)
puue + pove + (A + 2p)wwe + kT,
L pD ¢ i

After the transformation, Equations (3.31), (3.32), and (3.33), become:

oAt [ 8 L RN .. ei(A6)? 8% .y
{“ﬁ(ur) [@4_&&”) T e 20Ty @]}AU
OAL {8

A 5 . .
= — e | —(AV V)" — AWyt
3(1+7) 85( 2+ AVs) +8n(AW1+ 3)



86

b3 . - -
+ —(AE; + AE)™ ! 4 (AQ)™ 16

a¢
At P
8, - . . S B . .
+ 5;(—0 + Wi+ Wy +W3)" + 55(—H +Ey+ Ea+ E3)" +L"6 +Q"6}
+ € At}nwl EE(A£)4 64(‘](}“) 3.104
(1+47) J ag* (3.104)
[ gAL 3(3 — P+ R, 82(Ry)"  ei(An)2 a2 AD*
= B(l+T) 8g T4 o J a2
e fe(An)tat(JO™)
— AUT — ; o (3.105)
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{‘+ B+ 7) lac(Q Bat Bl ~ 502 J 8c2} }AU
_ TRk EG(AC)4 84(J[}n)
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UMl =U" + AU, (3.107)
Where A = £,4, Ry = §xéz Ry, and —P; + Ry, =
- 0 0 0 0 0
—(A+2u)er Bl 0 0 0 -
—pgt 0 e 0 0
—pe 0 0 ks 0
k k k
86,6, Gt (42 k- koo ()
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Jacobians — P, + Ry, and —Pg + R4, are found similarly.
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CHAPTER 4

RESULTS AND DISCUSSIONS

4.1. Imtroductors Remarhs

In order to implement the numerical scheme presented in the previous
chapter, a computer program was developed. The computer program { Appendix
A-2) was written in FORTRAN 77, and was run on an IBM/RS-6000 model 2 137
computer. Three groups of model calculations will be presented and discussed.
In the first group, addressed in section 4.2, the porous-media flow terms are
left out, and the Navier-Stokes equations are numerically solved for several one
and two dimrensional laminar flow problems, and compared with analytical and
numerical solutions. This is done in order to demonstrate the correctness of the
basic numerical scheme developed in this thesis.

In the second group of model calculations, presented in section 4.3, flow
in porous media is addressed. Once again, to demonstrate the correctness of the
developed model, simple systems are simulated, and the generated numerical
results are compared with analytical and numerical solutions.

Finally, in the third group of calculations, presented in section 4.4, the
numerical model is applied to shell-and-tube and packed-bed condensers with
simple geometries.

Due to the complexity of the problem and to the absence of similar
experiences in the open literature, a well-known explicit numerical scheme was
implemented in this research in order to validate some the results of this work.

This explicit, predictor-corrector scheme is known as the explicit MacCormack
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scheme [61] and is implemented when two dimensional flow is considered as

follows:
Predictor:
o7t =Ur, - % ( AR ﬁﬁj)
( 11:+1‘j VlT:J) - (‘?21:—1,:' - VZT:J)}
- %;‘ (ﬂ?,j+1 - é:.})
= (Wﬂj—i—l - Wﬂ;) - (Wé-:._‘j*l - W&:):I (4.1)
Corrector:

— ]. — -
Ui = 54Vi; T Ui

2
il pnil \ _ (pnil | gnr
(Fi,j Fe'—l,j) (VL.J th,j)

Sl _ ~nt+1 _ nt1 +1
(Gi,j Gi,j—l) (Wli,,- —Wli.jl)

- (WE"T - W;Tfl)] } (4.2)

where ﬁ, ﬁ, 17’1, Vy, G, W, and W5 are defined by Equations (2.33),

(2.34), (2.37), (2.38), (2.35), (2.40), and (2.41), respectively, with the exception
that w, the z-velocity, is set equal to zero. The intermediate time-level param-

eters ﬁinj+l, 172':';'1, etc., are calculated after calculating the premitive variables

from the conservative variables vector U/ 1‘7‘;1.
b
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The above scheme is simple to implement, however, it has very stringent
time step restrictions, especially when a high Reynolds number flow is involved.
Furthermore, when the porous media terms were included in this scheme, it was
found to be very unstable. This problem might be related to improper boundary
conditions imposition which needs to be investigated separately.

Different inlet and outlet boundary conditions were implemented for
the MacCormack scheme when porous media terms are present, unfortunately,
without success. The first inlet boundary condition implemented for the Mec-
Cormack scheme is done by prescribing the inlet pressure and the density and
extrapolating the velocity from the interior whereas the second inlet boundary
condition is implemented by prescribing the velocity and the density at the inlet
and extrapolating the pressure from the interior. The pressure was, however,
prescribed at the outlet and the other variables were extrapolated from the
interior.

The above scheme was implemented in two dimensions for the cases in
which no porous media terms were included and the results were found identical
to those results generated from the implicit factored scheme as will be shown
later.

However, due to the above mentioned difficulty, the porous media nu-
merical results are only compared with simple one dimensional analytical solu-
tions and a simple 3-D numerical model.

Beside the comparison with the two dimensional explicit scheme dis-
cussed above, the results of implicit factored scheme developed in this research
were also compared with some one dimensional analytical solutions.

Boundary conditions implementation, as discussed in section 3.5, is
one of the most difficult aspects of compressible fluid low modeling, and it is

customary to start with very simple boundary conditions to make sure that the
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computer code is running without any problems. This approach will be followed

in the forthcoming calculations.

4.2. Numerical Tests [or Navier-Stokes Equations

One of the basic tests that is performed in this research is the calculation
of the unsteady flow between two infinite adiabatic walls. This run will be
referred to as Case 1. The objective is to check the temporal as well as the
spatial accuracy of the numerical scheme and its boundary conditions.

Periodic boundary conditions are used in the z-direction in which the
flow variables at ¢ = 1 are set to be equal to the flow variables at i = £ — 1 at
every time step and the flow variables at i = ¢ are set to be equal to the flow
variables at { = 2 where ¢ = 1 and ¢ = £ are the first and the last grid points
in the w—directién, respectively. As can be seen, the above boundary conditions
are very simple to implement explicitly and implicitly and do not require any
additional specification of inlet or outlet boundary conditions.

In the calculations, the lower boundary (representing the lower plate)
was assumed to be fixed, the flow was assumed initially at rest, while the upper
boundary (upper plate) had an initial velocity ug in its own plane. An 11 x 11
uniform grid was used in this calculation with the following parameters:

Az = 0.00001 m

Ay = 0.00001 m

At=1x10""s

p=185x%107% kg/ms

p» = density of gas 1 = 0.016 kg/m?
pg = density of gas 2 = 0.016 kg/m?
T =300 K

ug = 100 m/s
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The results of this Couette flow, figure 4.1, and predictions of the ana-
lytical solutions [62] are in good agreement. The steady state solution is achieved
after approximately 300 iteration.

The above calculation was also repeated in such a way that x was made
the moving dimension and y was made the periodic spatial boundary. The same
procedure was also repeated for the 2-z and y-z-dimensions. This was done to
ensure that the same results are obtained in all directions. The results were
similar to Figure 4.1, and confirmed correctness of the solution scheme.

The next test referred to hereafter as Case 2, is the flow behavior near an
oscillating flat plate. This test was chosen to also check the temporal as well as
the spatial accuracy of the computer code. Periodic boundary conditions similar
to those described for the previous test were chosen in the z-direction. The lower
boundary was assumed at rest, and the upper boundary was oscillating with a
period of 500 s™!, The same grid and calculation parameters of the previous

example were chosen for this example except that, here:

At=1x 105
and
2 N At
— 100 sin | ——-
"o Sm( 5004 )

where ug is the oscillating velocity of the upper plate, and N is the
number of time steps. The same test was repeated for all directions.

The computed results are compared with the exact solutions {62] in
Figure 4.2, indicating excellent agreement.

Case 3, Figure 4.3, is a straight duct flow in which the Mach number
is maintained very low inside the duect to simulate incompressible flow. In this

example the inlet velocity is maintained constant and the outlet pressure is
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U

Figure 4.1. Flow Formation in Couette Motion (Case 1).
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Figure 4.2, Velocity Distribution in the Neighborhood of an Oscillating

Wall (Case 2).
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Figure 4.3. Straight Duct Velocity Distribution
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at Inlet and outlet
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specified. The outlet pressnre is maintained relatively high to maintain low Mach
number. The z-velocity magmitude is presented and found in good agreememt

with the analytical solution |62], the parabolic shape is recovered at the outlet.
The relatively small difference between the numerical and the analytical results
is due to the fact that in order to simulate exact incompressible flow using
compressible numerical schemes one has to set the Mach number equal to zero.
This condition, however, requires imposing infinite pressure values at the outlet
which is impossible to do numerically.

The explicit methods for solving the compressible Navier-Stokes equa-
tions as well as some implicit ones are limited to time steps usually less than

the Courant-Friedrichs-Lewy (CFL) condition:

At < ! (4.3)

h v) fu) L 1
(8 5+ S roya o+ o)

This condition shows that At — 0 as @ — oo where a is the speed of sound.
However a approaches infinity for incompressible flows. This is the reason why
it is not possible to simulate exact incompressible flows using compressible nu-
merical schemes. The parameters for Figure 4.3, and 4.4 are

Az =0.05m

Ay = 0.025 m

p = 028 kg/m>

p = 0.056 kg/ms

21 x 21 uniform grid

Inlet velocity = 10 m/s

Outlet pressure = 2000 N/m?

Figure 4.4 shows the relative errors of the conservative variables (i.e., p,, pu, pv,

pw, e, py) versus the iteration number. It can be seen that the relative errors of
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Figure 4.4. Conservative Variables Relative Errors (Case 4).
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the conservative variables decrease as the iteration number increases until the
convergence criterion is achieved.

The next example Case 4, the results of which are depicted in Figures
4.5, 4.6, and 4.7, is similar to the previous one except that the pressure is
specified both at the inlet and the outlet, as:

Inlet pressure = 2020 N/m?
Outlet pressure = 2000 N/m?

The pressure is maintained relatively large to maintain small Mach
number in order to simulate incompressible flow. The velocity distribution (Fig-
ure 4.5) as well as the pressure drop (Figure 4.6) are in good agreement with the
analytical solution. Figure 4.7 shows the relative error of the conservative vari-
ables. This error as expected decreases with more iterations, until convergence
is achieved.

The tests that were discussed before dealt with incompressible flow only,
because the Mach number was maintained very low. However, in order to test
the computer code for compressible flows the Mach number has to be increased.
Two one dimensional, compressible cases referred to as Cases 5 and 6 in the
following, are discussed here. The parameters for these cases are:

Parameters for Case 5:

Az =0.05m

Ay = 0.025 m

p = 0.504 kg/ms

Inlet density of gas 1 = 2.52 kg/m?

Inlet density of gas 2 = 0.0000252 kg/m?
Inlet velocity = 10 m/s

Outlet pressure = 2000 N/m?

(21 x 21) grid points
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Figure 4.5. Straight Duct Velocity Distribution at Constant Inlet Pressure
(Case 4).
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Figure 4.6. Straight Duct Pressure Distribution at Constant Inlet Pressure

(Case 4).
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Figure 4.7. Conservative variables Relative Errors (Case 4).
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Parameters for Case 6:
Ar =005m
Ay = 0.025m
p = 0.504 kg/ms
Inlet density of gas 1 = 2.52 kg/m?>
Inlet density of gas 2 = 0.0000252 k_q/-m3
Inlet pressure = 2300 N/m?3
Outlet pressure = 2000 N/m?
(21 x 21) grid points
Figures 4.8, 4.9, 4.10, 4.11, and 4.12 represent Case 5. Figure 4.8 shows
the velocity distribution, Figure 4.9 shows the pressure distribution, Figure 4.10
shows the density variation of gas 1, Figure 4.11 shows the density variation
of gas 2 and, finally, Figure 4.12 shows the conservative variables error as a
function of iteration number. Using simple calculations, it can be shown that in
this computation mass is always conserved at any cross-section along the duct.
Figures 4.13, 4.14, 4.15, and 4.16 are similar to those discussed above
except that they were generated for the aforementioned Case 6, namely, at fixed
inlet and outlet pressures. As noted, the above two compressible cases are found

to be in good agreement with those generated from the explicit scheme.
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Figure 4.8. Velocity Distribution at High Mach Number and Constant Inlet

Velocity (Case 3).
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Figure 4.10. Density of Gas 1 at High Mach Number and Constant Inlet

Velocity (Case 3).
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Figure 4.11. Density of Gas 2 at High Mach Number and Constant Inlet
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Figure 4.13. Velocity Distribution at High Mach Number and Constant Inlet

Pressure (Case 6).
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The calculation results that were discussed so far are for one dimensional
fHow only. Some two dimensional cases will now be discussed. The conditions
for the first two dimensional case, referred to as Case 7, are as follows:

Length = 1m

Height = 0.5 m

Inlet density = .28 kg/m®

i =0.001 kg/ms

Inlet pressure = 6050 m /s

QOutlet pressure = 6000 N/m?

(31 x 31) grid points with meshes clustered near the walls and the inlet and
outlet using the stretching function discussed before.

Inlet location at ¢ = Om and y in the interval (0.3m - 0 5m)

Outlet location at # = 1m and y in the interval (0m - 0 2m}

Figure 1.17 shows the velocity vector magnitudes in two dimensions
at low Mach number to simulate incompressible flow. Figure 4.18 shows the
pressure contours for the same case. The values shown in Figure 4.18 are above
the outlet pressure to generate clear contour lines. The results obtained in these
calculations, including those in Figures 4.17 and 4.18 are in good agreement
with those generated using the aforementioned MacCormack explicit scheme.

Case 8, to be discussed below, has the following parameters to simulate
compressible flow:

Length = Im

Height = 0.5 m

Inlet density of gas 1= 2.8 kg/m?>

Inlet density of gas 2= 0.000028 kg/m>
i = 0.01 kg/ms

Inlet pressure = 2400 m/s
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Figure 4.17. Velocity Vector Magnitude at Low Mach Number (Case T)
(scale Ilmm=1.63m/s).
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Figure 4.18. Pressure Distribution at Low Mach Number (Case 7)
(N /m? above exit pressure).
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Qutlel pressure = 2000 N /m?
(31 x 31) grid points with meshes clustered near the walls and the inlet and
outlet using the stretching function discussed in section 3.7.

It can be seen that the velocity at the outlet increases (Figure 4.19),
and the partial densities of gas 1 and ga~ 2 decrease {Figures 4.21 and 4.22), in
order for the mass to be conserved. The pressure values shown in Figure 4.20
are shown in N/m?, above the outlet pressure to show better contour contrast.

In summary, the aforementioned case studies indicate that the devel-
oped numerical scheme, when applied to an open flow systems (i.e., when Navier-
Stokes equations are dealt with), produces predictions which agree with the an-
alytical and numerical solutions. This confirms that the numerical scheme is

essentially correct.

4.3. Flow in Porous Media

As mentioned before, were the MacCormak explicit scheme did not
work when the porous media terms were included in the system of equations.
Due to this reason, one dimensional analytical solutions and a simple numerical
model were used to validate the results of the implicit factored scheme.

To simulate a system sufficiently simple for analytical solution, we im-
pose the following assumptions:

e Steady state.

s Fully developed flow in a duct 2H in height, and infinitely wide.
¢ Constant porosity.

o Incompressible flow.

¢ Brinkman's flow.
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Figure 4.19. Velocity Vector Magnitude at High Mach Number (Case 8)
{(scale lmm = 2.24m /s).



116

20

0 02 04 06 08 1
lergthinm
Figure 4.20 Pressure Distribution at High Mach Number (Case 8)

(N/m? above exit pressure).



117

0528 Q26
|28 o
04io8 27 _
27
03; :

28

0 02 04 06 08 1

lergthinm
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The flow in the porous medium will then be governed by:

%y dp  uBu
Bos = 51
dy dx K

(4.3)

where K is the permeability of the porous medium. The solution of the above

equation becomes

_af et 4.4
u_g SV/EH+6~\/,EH_ ()
d
where g = ﬁﬁ,andb: T'G{—

The above equation was used to validate a one dimensional packed bed
Case 9, and, as depicted in Figure 4.23 the results obtained with the analytical
and numerical solutions are in good agreement. Note that the inertial coefficients
in Equations (2.16), (2.17), and (2.18) were set equal to zero in the implicit
factored scheme to simulate the above case. The parameters used for the above
calculations were as follows:
Az = 0.05
Ay = 0.025
i =~ 9.888 x 10~ %kg/ms
(21 x 21) grid points
Inlet density = 0.02 kg/m?
3=104
Particle diameter dp = 5 x 10~%m
Inlet pressure = 2000 N/m3
Outlet pressure = 1990 N/m?

The above porous medium case dealt with a two dimensional system.
The adequacy of the model for three dimensional systems is now discussed.

To obtain an easy-to-verify base case for the three dimensional sys-
tem, a separate incompressible computer program assuming Darcy’s flow was

developed. This was done by solving the following system of equations.



120

cx 1 I ' e 1
0 20 40 60 80 1000 1200
veloaty innTs

Figure 4.23. Pressure Distribution in a Packed Bed Porous Medium (Case 9).
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e Incompressible continuity equation

8'u+8v+6w70 43
dr By Bz (43)

e Darcy’s momentum equations in z, y, and z directions:

ap #

o - _Eu (4-4)
9 _ w
By % (4.5)
dp
5, - 'Y (4.6)

Assuming g, 3 and K are constants and substituting , v, and w from Equations

(4.4), (4.5) and (4.6), respectively into Equation (4.3) one gets

~0 (4.7)

The solution of the above equation is simple, and can be done by im-
posing constant inlet and outlet pressure boundary conditions to the assumed
system. When applied to a finite system, at the walls the normal derivative
of the pressure is zero. Once the pressure distribution is established via the
mimerical solution of the above equations, the velocities can be evaluated using
Equations (4.4), (4.5) and (4.6).

The above equations are solved for the following conditions (Case 10):
Az = .05m
Ay = 0.025m
Az = 0.05m
g = 9.888 % 107% kg/(m s)

(21 x 21 x 21) grid points
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Inlet density = 0.02 kg/m?>

3=04

Particle diameter, dp = 5 x 10™3m

Inlet pressure = 20,000 N/m?

Outlet pressure = 19800 N/m?

The geometry of Case is shown in Figure 4.24.

Figures 4.25 and 4.26 show the velocity vector magnitude at the sym-
metry plane shown in Figure 4.24, generated from the implicit factored scheme
and the simple model represented by Equations {4.4)-(4.7), respectively. Also
Figure 4.26 and Figure 4.27 show the pressure contours evaluated at the sym-
metry plane shown in Figure 4.24, generated from the imiphat factored scheme
and the above simple model, respectively. As noted, the two solutions results
are in good agreement.

The' numerical model is now applied to a simple shell-and-tube con-
denser. This is done assuming a very simple one dimensional system. This
simulation will be referred to as Case 11. The parameters used for this case are
similar to those for the aforementioned Case 10, except that here the tube outer
diameter was assumed to be Dy = 0.019m, and the tubes were assumed to form
a square lattice with the pitch being P = 0.026m. The governing equations
are simplified by assuming that the flow is one dimensional, incompressible and

inviscid, so that the governing momentum equation reduces to
dp
B— = F, (4.8)
dx

The above equation was solved analytically and compared with the
numerical solution. Figures 4.29 and 4.30 compare the pressure and velocity
profiles generated from the numerical and the analytical solution, with good

agreement between them..
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Figure 4.25. Velocity Vector Magnitude Generated from the Implicit Factored

Scheme (Case 10}{scale lmm=.615m/s).
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Figure 4.26. Pressure Contour Generated from the Implicit Factored Scheme

(Case 10) (N/m? above exit pressure).
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Figure 4.30. Velocity Field of a Shell and Tube (Case 11).
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4.4. Conduesation in Porous Media

In this section condensation, with and without noncondensables present,
in shell-and-tube and packed bed condensers is modeled. The results that are
discussed below are based on three dimensional calculations for the geometrv de-
picted in Figure 4.24. This geometry was used in order to take advanrage of the
symmetry, and therefore reduce the required computer time. In setting up the
simulations, the mesh was concentrated near the walls and the inlet and the out-
let; using the transformation discussed in section 3.7. All the results presented
here, after being evaluated at every grid point, are averaged cross-sectionally at
equally spaced points in the z-direction.

Due to the absence of similar experience in the open literature, the
results will be presented here and analvzed based on physical arguments.

Five cases are discussed for each of the shell-and-tube and the packed

bed condensers. All cases have the following parameters:

Length = 1 m
Hight = 1 m
Width = 1m

Inlet hight = .2 m

QOutlet hight = .2 m

Outlet pressue = 2000 N/m?

Inlet temperature — 350K

Inlet velocity = 20 m/s

Porosity 3 = .4

Shell-and-tube coolant inlet temperature =280. K
Packed bed particles centerline temperature =280, K

Shell-and-tube coolant velocity = 1.5 m/s.
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The aforementioned cases differ in their inlet mass fraction of the non-
condensables such that:
¢ Case 12 — pure condensation
e Case 13 — noncondensable inlet mass fraction = 0.0001
o Case 14 — noncondensable inlet mass fraction = 0.001
e Case 15 — noncondensable inlet mass fraction = 0.01
o Case 16 — noncondensable inlet mass fraction = 0.02

Figures 4.31 and 4.32 show the cross-sectional average velocity as a
function of the z-coordinate for the shell-and-tube and the packed bed con-
densers, respectively. As expected, due to condensation, the velocity decreases
as r increases.

It can be also seen that the reduction in the velocity increases as the
inlet noncondensable mass fraction decreases. This phenomenon occurs be-
cause the condensation rate increases when the noncondensable concentration
decreases.

Figures 4.33 and 4.34 represent the cross-sectional average mixture
pressure along the z-direction. As expected, the pressure decreases as the z-
increases.

Figures 4.35 and 4.36 show the cross-sectional average mixture témper—
ature for the shell-and-tube and the packed bed, respectively. The temperature
decreases as the z increases and this reduction in the temperature is due to
condensation taking place in the systems, which leads to lower vapor partial
pressure, and consequently lower saturation temperature.

Figures 4.37 and 4.38 are the cross-sectional average noncondensable
mass fractions for shell-and-tube and packed bed condensers, respectively. The
mass fractions increase as z increases, due to the partial removal of vapor due

to condensation.
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Figure 4.31. Cross-sectional Average Velocity of a Shell and Tube.
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Figure 4.32. Cross-sectional Average Velocity of a Packed Bed.
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Figure 4.33. Cross-sectional Average Mixture Pressure of a Shell and Tube.
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Figure 4.34. Cross-sectional Average Mixture Pressure of a Packed Bed.
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Figure 4.35. Cross-sectional Average Mixture Temperature for a Shell and Tube.
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Figure 4.36. Cross-sectional Average Mixture Temperature for a Packed Bed.
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Figure 4.37. Cross-sectional Averaygce Vass Fraction of a Shell and Tube.
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Figure 4.38. Cross-sectional Average Mass Fraction of a Packed Bed.
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Figures 4.39 and 4.40 are the cross-sectional average steam partial pres-
sures of shell-and-tube and packed bed condensers, respectively. The steam
partial pressure follows the same trend of the mixture pressure.

FFigures 4.41 and 4.42 show the cross-sectional average condensation
rate for shell-and-tube and packed bed condensers, respectively. The figures
show that the condensation rate decreases as z increases and this is mainly due
to the increase in the noncondensables mass fraction.

Figures 4.43 and 4.44 are the cross-sectional average heat fluxes for
shell-and-tube and packed bed condensers, respectively. The heat fluxes decease
as v mcreases and this is mainly due to the increase in the mass fraction of
the noncondensables as they form a heat and mass transfer resistance on the
condensing surfaces.

As has been explained in Chapter 1, even 0.5% of noncondensables
might decrease the heat transfer rate up to 50%. It is also noticed from Figure
4.44 that, according to the model, compared with pure vapor, 0.01% of non-
condensable at the inlet, reduces the heat flux by 22%. With one percent of
noncondensables at the inlet, however, the heat flux is reduced by 50%.

It should be mentioned that, for porous media and typical condensers,
the effect of viscosity and thermal conduction in the fluid are neghgibly small.
As mentioned before in Chapter 2, although the conservation equations have
been presented in laminar form, they can address the effect of turbulence by
adding the turbulent eddy thermal and momentum diffusivities to the molec-
ular kinematic viscosity and thermal diffusivity, respectively. To examine the
significance of turbulence, some of the model calculations relevant to porous
media and condensers were repeated. where the molecular viscosity and ther-
mal conductivity were multiplied by 10. The results, as expected, showed no

noticeable difference with corresponding calculations using the molecular viscos-



141

4500 :
ot rencord
+
400 .00 roncord
= ¥
2 3500 —
s )
000
E
Lot
L
200; %
1 ¥
X 4
g:]@r X *
gﬂmi

02 04 06 08
lengthinm

I'eure 4.39. Cross-sectional Average Steam Partial Pressure of a Shell and Tube.
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Figure 4.40. Cross-sectional Average Steam Partial Pressure of a Packed Bed.
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Figure 4.41. Cross-sectional Average Condensation Rate of a Shell and Tube.
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Figure 4.43. Cross-sectional Average Heat Flux of a shell and Tube.
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Figure 4.44. Cross-sectional Average Heat Flux of a Packed Bed.
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ity and thermal conductivity. Also, no noticeable changes occurred as a result
of dividing the fluid viscosity and thermal conductivity by 10. This indicated
that the common practice of neglecting viscous and turbulent shear stresses, in

comparison with the porous media frictional and pressure losses, is justified.
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CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

5.1. Conclusion

Condensers are vital components of power plants and refrigeration sys-
tems, and many other widely-used industrial applications. Mechanistic model-
ing of flow and heat and mass transfer processes in condensers, based on the
numerical solution of conservation equations, has been attempted by several in-
vestigators only recently. The most advanced published numerical models, , have
major shortcomings. They do not account for the compressibility of the vapor-
noncondnesables mixture. Most of them, furthermore, do not adequately model
the combined heat and mass transfer process associated with condensate-vapor
interface, and instead depend on purely empirical correlations. The development
of a mechanistic model which resolves these shortcomings was the objective of
this research.

Condensation in the presence of noncondensables, in condensers with
complex geometries was mechanistically modeled in this thesis. The modeling
was based on a rigorous representation of the vapor-noncondensable conserva-
tion equations flowing in porous media, accounting for the vapor-noncondensable
compressibility effects. These conservation equations are numerically solved.
For this numerical solution, the implicit factored scheme (IFS) was modified to

address a general porous media formulation. A simple and innovative method
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was also developed, which makes it possible to include one or more noncondens-
able mass species conservation equations in the IFS scheme without significantly

increasing the computational cost of the numerical solution scheme.

The numerical solution of the aforementioned conservation equations,
which are referred to here as the macroscopic level model, is performed in con-
junction with a microscopic-level model, based on the sl agnant-film model, for
calculating the heat and mass trausfer processes at the interface between the
condensate liquid and the vapor-noncondensable gas mixture.

The developed model was successfully applied to a large number of one ,
two and three dimensional problems involving condensation in channels, porous
media, and packed bed and shell-and-tube condensers. In all the simulations
the predictions of the numerical model developed in this closely agreed with
analytical solutions or predictions made by other well-proven numerical solution

methods.

b.2. Recommendations

The capabilities of the developed model can be significantly enhanced.
The following is a list of improvements which will greatly contribute to the
enhancement of the developed model.
¢ The macroscopic-level model treats the vapor and the noncondensable gas as
ideal gases. These models should be modified such that the vapor properties
can be obtained from realistic property routines.
e The volume occupied by the condensate in the secondary side of condensers
is neglected in this model. The model should be modified to account for the
condensate volume. This is particularly important for advanced condensers
involving phase-change-material (PCM) particles, or structured packings, where

the flow of the condensate may need to be mechanistically modeled separately.
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» The developed computer code should be provided the capability of addressing
current condenser geometries, including the effect of flow baffels.

e Finally, the computational time required for the numerical simulation of con-

densers should be reduced. This objective can be fulfilled by adapting the com-

puter program to parallel or vectored computers.
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